Cargando…
Inferring cancer disease response from radiology reports using large language models with data augmentation and prompting
OBJECTIVE: To assess large language models on their ability to accurately infer cancer disease response from free-text radiology reports. MATERIALS AND METHODS: We assembled 10 602 computed tomography reports from cancer patients seen at a single institution. All reports were classified into: no evi...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531105/ https://www.ncbi.nlm.nih.gov/pubmed/37451682 http://dx.doi.org/10.1093/jamia/ocad133 |