Cargando…
Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies
Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure–activity relationship of tubulin-isothiocyanate int...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531289/ https://www.ncbi.nlm.nih.gov/pubmed/37761977 http://dx.doi.org/10.3390/ijms241813674 |
_version_ | 1785111683811770368 |
---|---|
author | Grzywa, Renata Psurski, Mateusz Gajda, Anna Gajda, Tadeusz Janczewski, Łukasz |
author_facet | Grzywa, Renata Psurski, Mateusz Gajda, Anna Gajda, Tadeusz Janczewski, Łukasz |
author_sort | Grzywa, Renata |
collection | PubMed |
description | Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure–activity relationship of tubulin-isothiocyanate interactions, we designed and synthesized a series of sixteen known and novel, structurally diverse ITCs, including amino acid ester-derived isothiocyanates, bis-isothiocyanates, analogs of benzyl isothiocyanate, and phosphorus analogs of sulforaphane. All synthesized compounds and selected natural isothiocyanates (BITC, PEITC, AITC, and SFN) were tested in vitro to evaluate their antiproliferative activity, tubulin polymerization inhibition potential, and influence on cell cycle progression. The antiproliferative activity of most of the newly tested compounds exceeded the action of natural isothiocyanates, with four structures being more potent as tubulin polymerization inhibitors than BITC. As a confirmation of anti-tubulin activity, the correlation between polymerization inhibition and cell cycle arrest in the G(2)/M phase was observed for the most active compounds. In light of the biological results indicating significant differences in the impact of structurally diverse isothiocyanate on tubulin polymerization, in silico analysis was conducted to analyze the possible mode of isothiocyanate-tubulin binding and to show how it can influence the polymerization reaction. |
format | Online Article Text |
id | pubmed-10531289 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105312892023-09-28 Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies Grzywa, Renata Psurski, Mateusz Gajda, Anna Gajda, Tadeusz Janczewski, Łukasz Int J Mol Sci Article Among the various substances that interfere with the microtubule formation process, isothiocyanates (ITCs) are the group of compounds for which the binding mode and mechanism of action have not yet been explained. To better understand the structure–activity relationship of tubulin-isothiocyanate interactions, we designed and synthesized a series of sixteen known and novel, structurally diverse ITCs, including amino acid ester-derived isothiocyanates, bis-isothiocyanates, analogs of benzyl isothiocyanate, and phosphorus analogs of sulforaphane. All synthesized compounds and selected natural isothiocyanates (BITC, PEITC, AITC, and SFN) were tested in vitro to evaluate their antiproliferative activity, tubulin polymerization inhibition potential, and influence on cell cycle progression. The antiproliferative activity of most of the newly tested compounds exceeded the action of natural isothiocyanates, with four structures being more potent as tubulin polymerization inhibitors than BITC. As a confirmation of anti-tubulin activity, the correlation between polymerization inhibition and cell cycle arrest in the G(2)/M phase was observed for the most active compounds. In light of the biological results indicating significant differences in the impact of structurally diverse isothiocyanate on tubulin polymerization, in silico analysis was conducted to analyze the possible mode of isothiocyanate-tubulin binding and to show how it can influence the polymerization reaction. MDPI 2023-09-05 /pmc/articles/PMC10531289/ /pubmed/37761977 http://dx.doi.org/10.3390/ijms241813674 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Grzywa, Renata Psurski, Mateusz Gajda, Anna Gajda, Tadeusz Janczewski, Łukasz Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies |
title | Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies |
title_full | Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies |
title_fullStr | Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies |
title_full_unstemmed | Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies |
title_short | Isothiocyanates as Tubulin Polymerization Inhibitors—Synthesis and Structure–Activity Relationship Studies |
title_sort | isothiocyanates as tubulin polymerization inhibitors—synthesis and structure–activity relationship studies |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531289/ https://www.ncbi.nlm.nih.gov/pubmed/37761977 http://dx.doi.org/10.3390/ijms241813674 |
work_keys_str_mv | AT grzywarenata isothiocyanatesastubulinpolymerizationinhibitorssynthesisandstructureactivityrelationshipstudies AT psurskimateusz isothiocyanatesastubulinpolymerizationinhibitorssynthesisandstructureactivityrelationshipstudies AT gajdaanna isothiocyanatesastubulinpolymerizationinhibitorssynthesisandstructureactivityrelationshipstudies AT gajdatadeusz isothiocyanatesastubulinpolymerizationinhibitorssynthesisandstructureactivityrelationshipstudies AT janczewskiłukasz isothiocyanatesastubulinpolymerizationinhibitorssynthesisandstructureactivityrelationshipstudies |