Cargando…

Data-Weighted Multivariate Generalized Gaussian Mixture Model: Application to Point Cloud Robust Registration

In this paper, a weighted multivariate generalized Gaussian mixture model combined with stochastic optimization is proposed for point cloud registration. The mixture model parameters of the target scene and the scene to be registered are updated iteratively by the fixed point method under the framew...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Bingwei, Najar, Fatma, Bouguila, Nizar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532543/
https://www.ncbi.nlm.nih.gov/pubmed/37754943
http://dx.doi.org/10.3390/jimaging9090179
Descripción
Sumario:In this paper, a weighted multivariate generalized Gaussian mixture model combined with stochastic optimization is proposed for point cloud registration. The mixture model parameters of the target scene and the scene to be registered are updated iteratively by the fixed point method under the framework of the EM algorithm, and the number of components is determined based on the minimum message length criterion (MML). The KL divergence between these two mixture models is utilized as the loss function for stochastic optimization to find the optimal parameters of the transformation model. The self-built point clouds are used to evaluate the performance of the proposed algorithm on rigid registration. Experiments demonstrate that the algorithm dramatically reduces the impact of noise and outliers and effectively extracts the key features of the data-intensive regions.