Cargando…
Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets
Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoprot...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533562/ https://www.ncbi.nlm.nih.gov/pubmed/37758692 http://dx.doi.org/10.1038/s41467-023-41442-z |
_version_ | 1785112210744279040 |
---|---|
author | Haas, Kelsey M. McGregor, Michael J. Bouhaddou, Mehdi Polacco, Benjamin J. Kim, Eun-Young Nguyen, Thong T. Newton, Billy W. Urbanowski, Matthew Kim, Heejin Williams, Michael A. P. Rezelj, Veronica V. Hardy, Alexandra Fossati, Andrea Stevenson, Erica J. Sukerman, Ellie Kim, Tiffany Penugonda, Sudhir Moreno, Elena Braberg, Hannes Zhou, Yuan Metreveli, Giorgi Harjai, Bhavya Tummino, Tia A. Melnyk, James E. Soucheray, Margaret Batra, Jyoti Pache, Lars Martin-Sancho, Laura Carlson-Stevermer, Jared Jureka, Alexander S. Basler, Christopher F. Shokat, Kevan M. Shoichet, Brian K. Shriver, Leah P. Johnson, Jeffrey R. Shaw, Megan L. Chanda, Sumit K. Roden, Dan M. Carter, Tonia C. Kottyan, Leah C. Chisholm, Rex L. Pacheco, Jennifer A. Smith, Maureen E. Schrodi, Steven J. Albrecht, Randy A. Vignuzzi, Marco Zuliani-Alvarez, Lorena Swaney, Danielle L. Eckhardt, Manon Wolinsky, Steven M. White, Kris M. Hultquist, Judd F. Kaake, Robyn M. García-Sastre, Adolfo Krogan, Nevan J. |
author_facet | Haas, Kelsey M. McGregor, Michael J. Bouhaddou, Mehdi Polacco, Benjamin J. Kim, Eun-Young Nguyen, Thong T. Newton, Billy W. Urbanowski, Matthew Kim, Heejin Williams, Michael A. P. Rezelj, Veronica V. Hardy, Alexandra Fossati, Andrea Stevenson, Erica J. Sukerman, Ellie Kim, Tiffany Penugonda, Sudhir Moreno, Elena Braberg, Hannes Zhou, Yuan Metreveli, Giorgi Harjai, Bhavya Tummino, Tia A. Melnyk, James E. Soucheray, Margaret Batra, Jyoti Pache, Lars Martin-Sancho, Laura Carlson-Stevermer, Jared Jureka, Alexander S. Basler, Christopher F. Shokat, Kevan M. Shoichet, Brian K. Shriver, Leah P. Johnson, Jeffrey R. Shaw, Megan L. Chanda, Sumit K. Roden, Dan M. Carter, Tonia C. Kottyan, Leah C. Chisholm, Rex L. Pacheco, Jennifer A. Smith, Maureen E. Schrodi, Steven J. Albrecht, Randy A. Vignuzzi, Marco Zuliani-Alvarez, Lorena Swaney, Danielle L. Eckhardt, Manon Wolinsky, Steven M. White, Kris M. Hultquist, Judd F. Kaake, Robyn M. García-Sastre, Adolfo Krogan, Nevan J. |
author_sort | Haas, Kelsey M. |
collection | PubMed |
description | Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT. |
format | Online Article Text |
id | pubmed-10533562 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105335622023-09-29 Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets Haas, Kelsey M. McGregor, Michael J. Bouhaddou, Mehdi Polacco, Benjamin J. Kim, Eun-Young Nguyen, Thong T. Newton, Billy W. Urbanowski, Matthew Kim, Heejin Williams, Michael A. P. Rezelj, Veronica V. Hardy, Alexandra Fossati, Andrea Stevenson, Erica J. Sukerman, Ellie Kim, Tiffany Penugonda, Sudhir Moreno, Elena Braberg, Hannes Zhou, Yuan Metreveli, Giorgi Harjai, Bhavya Tummino, Tia A. Melnyk, James E. Soucheray, Margaret Batra, Jyoti Pache, Lars Martin-Sancho, Laura Carlson-Stevermer, Jared Jureka, Alexander S. Basler, Christopher F. Shokat, Kevan M. Shoichet, Brian K. Shriver, Leah P. Johnson, Jeffrey R. Shaw, Megan L. Chanda, Sumit K. Roden, Dan M. Carter, Tonia C. Kottyan, Leah C. Chisholm, Rex L. Pacheco, Jennifer A. Smith, Maureen E. Schrodi, Steven J. Albrecht, Randy A. Vignuzzi, Marco Zuliani-Alvarez, Lorena Swaney, Danielle L. Eckhardt, Manon Wolinsky, Steven M. White, Kris M. Hultquist, Judd F. Kaake, Robyn M. García-Sastre, Adolfo Krogan, Nevan J. Nat Commun Article Influenza A Virus (IAV) is a recurring respiratory virus with limited availability of antiviral therapies. Understanding host proteins essential for IAV infection can identify targets for alternative host-directed therapies (HDTs). Using affinity purification-mass spectrometry and global phosphoproteomic and protein abundance analyses using three IAV strains (pH1N1, H3N2, H5N1) in three human cell types (A549, NHBE, THP-1), we map 332 IAV-human protein-protein interactions and identify 13 IAV-modulated kinases. Whole exome sequencing of patients who experienced severe influenza reveals several genes, including scaffold protein AHNAK, with predicted loss-of-function variants that are also identified in our proteomic analyses. Of our identified host factors, 54 significantly alter IAV infection upon siRNA knockdown, and two factors, AHNAK and coatomer subunit COPB1, are also essential for productive infection by SARS-CoV-2. Finally, 16 compounds targeting our identified host factors suppress IAV replication, with two targeting CDK2 and FLT3 showing pan-antiviral activity across influenza and coronavirus families. This study provides a comprehensive network model of IAV infection in human cells, identifying functional host targets for pan-viral HDT. Nature Publishing Group UK 2023-09-27 /pmc/articles/PMC10533562/ /pubmed/37758692 http://dx.doi.org/10.1038/s41467-023-41442-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Haas, Kelsey M. McGregor, Michael J. Bouhaddou, Mehdi Polacco, Benjamin J. Kim, Eun-Young Nguyen, Thong T. Newton, Billy W. Urbanowski, Matthew Kim, Heejin Williams, Michael A. P. Rezelj, Veronica V. Hardy, Alexandra Fossati, Andrea Stevenson, Erica J. Sukerman, Ellie Kim, Tiffany Penugonda, Sudhir Moreno, Elena Braberg, Hannes Zhou, Yuan Metreveli, Giorgi Harjai, Bhavya Tummino, Tia A. Melnyk, James E. Soucheray, Margaret Batra, Jyoti Pache, Lars Martin-Sancho, Laura Carlson-Stevermer, Jared Jureka, Alexander S. Basler, Christopher F. Shokat, Kevan M. Shoichet, Brian K. Shriver, Leah P. Johnson, Jeffrey R. Shaw, Megan L. Chanda, Sumit K. Roden, Dan M. Carter, Tonia C. Kottyan, Leah C. Chisholm, Rex L. Pacheco, Jennifer A. Smith, Maureen E. Schrodi, Steven J. Albrecht, Randy A. Vignuzzi, Marco Zuliani-Alvarez, Lorena Swaney, Danielle L. Eckhardt, Manon Wolinsky, Steven M. White, Kris M. Hultquist, Judd F. Kaake, Robyn M. García-Sastre, Adolfo Krogan, Nevan J. Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets |
title | Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets |
title_full | Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets |
title_fullStr | Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets |
title_full_unstemmed | Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets |
title_short | Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets |
title_sort | proteomic and genetic analyses of influenza a viruses identify pan-viral host targets |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533562/ https://www.ncbi.nlm.nih.gov/pubmed/37758692 http://dx.doi.org/10.1038/s41467-023-41442-z |
work_keys_str_mv | AT haaskelseym proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT mcgregormichaelj proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT bouhaddoumehdi proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT polaccobenjaminj proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT kimeunyoung proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT nguyenthongt proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT newtonbillyw proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT urbanowskimatthew proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT kimheejin proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT williamsmichaelap proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT rezeljveronicav proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT hardyalexandra proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT fossatiandrea proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT stevensonericaj proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT sukermanellie proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT kimtiffany proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT penugondasudhir proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT morenoelena proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT braberghannes proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT zhouyuan proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT metreveligiorgi proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT harjaibhavya proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT tumminotiaa proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT melnykjamese proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT soucheraymargaret proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT batrajyoti proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT pachelars proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT martinsancholaura proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT carlsonstevermerjared proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT jurekaalexanders proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT baslerchristopherf proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT shokatkevanm proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT shoichetbriank proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT shriverleahp proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT johnsonjeffreyr proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT shawmeganl proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT chandasumitk proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT rodendanm proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT cartertoniac proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT kottyanleahc proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT chisholmrexl proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT pachecojennifera proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT smithmaureene proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT schrodistevenj proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT albrechtrandya proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT vignuzzimarco proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT zulianialvarezlorena proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT swaneydaniellel proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT eckhardtmanon proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT wolinskystevenm proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT whitekrism proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT hultquistjuddf proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT kaakerobynm proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT garciasastreadolfo proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets AT krogannevanj proteomicandgeneticanalysesofinfluenzaavirusesidentifypanviralhosttargets |