Cargando…
Variations in microbial diversity and chemical components of raw dark tea under different relative humidity storage conditions
Raw dark tea (RDT) usually needs to be stored for a long time to improve its quality under suitable relative humidity (RH). However, the impact of RH on tea quality is unclear. In this study, we investigated the metabolites and microbial diversity, and evaluated the sensory quality of RDT stored und...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534245/ https://www.ncbi.nlm.nih.gov/pubmed/37780317 http://dx.doi.org/10.1016/j.fochx.2023.100863 |
Sumario: | Raw dark tea (RDT) usually needs to be stored for a long time to improve its quality under suitable relative humidity (RH). However, the impact of RH on tea quality is unclear. In this study, we investigated the metabolites and microbial diversity, and evaluated the sensory quality of RDT stored under three RH conditions (1%, 57%, and 88%). UHPLC-Q-TOF-MS analysis identified 144 metabolites, including catechins, flavonols, phenolic acids, amino acids, and organic acids. 57% RH led to higher levels of O-methylated catechin derivatives, polymerized catechins, and flavonols/flavones when compared to 1% and 88% RH. The best score in sensory evaluation was also obtained by 57% RH. Aspergillus, Gluconobacter, Kluyvera, and Pantoea were identified as the core functional microorganisms in RDT under different RH storage conditions. Overall, the findings provided new insights into the variation of microbial communities and chemical components under different RH storage conditions. |
---|