Cargando…
Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
In prostate cancer, there is an urgent need for objective prognostic biomarkers that identify the metastatic potential of a tumor at an early stage. While recent analyses indicated TP53 mutations as candidate biomarkers, molecular profiling in a clinical setting is complicated by tumor heterogeneity...
Autores principales: | Pizurica, Marija, Larmuseau, Maarten, Van der Eecken, Kim, de Schaetzen van Brienen, Louise, Carrillo-Perez, Francisco, Isphording, Simon, Lumen, Nicolaas, Van Dorpe, Jo, Ost, Piet, Verbeke, Sofie, Gevaert, Olivier, Marchal, Kathleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for Cancer Research
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538366/ https://www.ncbi.nlm.nih.gov/pubmed/37352385 http://dx.doi.org/10.1158/0008-5472.CAN-22-3113 |
Ejemplares similares
-
Comparative analysis of somatic variant calling on matched FF and FFPE WGS samples
por: de Schaetzen van Brienen, Louise, et al.
Publicado: (2020) -
Network-Based Analysis to Identify Drivers of Metastatic Prostate Cancer Using GoNetic
por: de Schaetzen van Brienen, Louise, et al.
Publicado: (2021) -
Extracting functional insights from loss-of-function screens using deep link prediction
por: Strybol, Pieter-Paul, et al.
Publicado: (2022) -
Halvade somatic: Somatic variant calling with Apache Spark
por: Decap, Dries, et al.
Publicado: (2022) -
Synthetic whole-slide image tile generation with gene expression profile-infused deep generative models
por: Carrillo-Perez, Francisco, et al.
Publicado: (2023)