Cargando…

HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile

Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, s...

Descripción completa

Detalles Bibliográficos
Autores principales: Pavao, Aidan, Zhang, Ella, Monestier, Auriane, Peltier, Johann, Dupuy, Bruno, Cheng, Leo, Bry, Lynn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541586/
https://www.ncbi.nlm.nih.gov/pubmed/37786668
http://dx.doi.org/10.1101/2023.09.18.558167
_version_ 1785113931145019392
author Pavao, Aidan
Zhang, Ella
Monestier, Auriane
Peltier, Johann
Dupuy, Bruno
Cheng, Leo
Bry, Lynn
author_facet Pavao, Aidan
Zhang, Ella
Monestier, Auriane
Peltier, Johann
Dupuy, Bruno
Cheng, Leo
Bry, Lynn
author_sort Pavao, Aidan
collection PubMed
description Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, supports dual redox metabolism in the pathogen Clostridioides difficile. Realtime, High-Resolution Magic Angle Spinning NMR spectroscopy, with dynamic flux balance analyses, inferred dynamic recruitment of four distinct threonine fermentation pathways, including ones with intermediate accrual that supported changing cellular needs for energy, redox metabolism, nitrogen cycling, and growth. Model predictions with (13)C isotopomer analyses of [U-(13)C]threonine metabolites inferred threonine’s reduction to butyrate through the reductive leucine pathway, a finding confirmed by deletion of the hadA 2-hydroxyisocaproate CoA transferase. In vivo metabolomic and metatranscriptomic analyses illustrate how threonine metabolism in C. difficile and the protective commensal Paraclostridium bifermentans impacts pathogen colonization and growth, expanding the range of dual-redox substrates that modulate host risks for disease.
format Online
Article
Text
id pubmed-10541586
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105415862023-10-02 HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile Pavao, Aidan Zhang, Ella Monestier, Auriane Peltier, Johann Dupuy, Bruno Cheng, Leo Bry, Lynn bioRxiv Article Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, supports dual redox metabolism in the pathogen Clostridioides difficile. Realtime, High-Resolution Magic Angle Spinning NMR spectroscopy, with dynamic flux balance analyses, inferred dynamic recruitment of four distinct threonine fermentation pathways, including ones with intermediate accrual that supported changing cellular needs for energy, redox metabolism, nitrogen cycling, and growth. Model predictions with (13)C isotopomer analyses of [U-(13)C]threonine metabolites inferred threonine’s reduction to butyrate through the reductive leucine pathway, a finding confirmed by deletion of the hadA 2-hydroxyisocaproate CoA transferase. In vivo metabolomic and metatranscriptomic analyses illustrate how threonine metabolism in C. difficile and the protective commensal Paraclostridium bifermentans impacts pathogen colonization and growth, expanding the range of dual-redox substrates that modulate host risks for disease. Cold Spring Harbor Laboratory 2023-09-18 /pmc/articles/PMC10541586/ /pubmed/37786668 http://dx.doi.org/10.1101/2023.09.18.558167 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use.
spellingShingle Article
Pavao, Aidan
Zhang, Ella
Monestier, Auriane
Peltier, Johann
Dupuy, Bruno
Cheng, Leo
Bry, Lynn
HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile
title HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile
title_full HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile
title_fullStr HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile
title_full_unstemmed HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile
title_short HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile
title_sort hrmas (13)c nmr and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for clostridioides difficile
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541586/
https://www.ncbi.nlm.nih.gov/pubmed/37786668
http://dx.doi.org/10.1101/2023.09.18.558167
work_keys_str_mv AT pavaoaidan hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile
AT zhangella hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile
AT monestierauriane hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile
AT peltierjohann hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile
AT dupuybruno hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile
AT chengleo hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile
AT brylynn hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile