Cargando…
HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile
Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541586/ https://www.ncbi.nlm.nih.gov/pubmed/37786668 http://dx.doi.org/10.1101/2023.09.18.558167 |
_version_ | 1785113931145019392 |
---|---|
author | Pavao, Aidan Zhang, Ella Monestier, Auriane Peltier, Johann Dupuy, Bruno Cheng, Leo Bry, Lynn |
author_facet | Pavao, Aidan Zhang, Ella Monestier, Auriane Peltier, Johann Dupuy, Bruno Cheng, Leo Bry, Lynn |
author_sort | Pavao, Aidan |
collection | PubMed |
description | Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, supports dual redox metabolism in the pathogen Clostridioides difficile. Realtime, High-Resolution Magic Angle Spinning NMR spectroscopy, with dynamic flux balance analyses, inferred dynamic recruitment of four distinct threonine fermentation pathways, including ones with intermediate accrual that supported changing cellular needs for energy, redox metabolism, nitrogen cycling, and growth. Model predictions with (13)C isotopomer analyses of [U-(13)C]threonine metabolites inferred threonine’s reduction to butyrate through the reductive leucine pathway, a finding confirmed by deletion of the hadA 2-hydroxyisocaproate CoA transferase. In vivo metabolomic and metatranscriptomic analyses illustrate how threonine metabolism in C. difficile and the protective commensal Paraclostridium bifermentans impacts pathogen colonization and growth, expanding the range of dual-redox substrates that modulate host risks for disease. |
format | Online Article Text |
id | pubmed-10541586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105415862023-10-02 HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile Pavao, Aidan Zhang, Ella Monestier, Auriane Peltier, Johann Dupuy, Bruno Cheng, Leo Bry, Lynn bioRxiv Article Stickland-fermenting Clostridia preferentially ferment amino acids to generate energy and anabolic substrates for growth. In gut ecosystems, these species prefer dual redox substrates, particularly mucin-abundant leucine. Here, we establish how theronine, a more prevalent, mucinabundant substrate, supports dual redox metabolism in the pathogen Clostridioides difficile. Realtime, High-Resolution Magic Angle Spinning NMR spectroscopy, with dynamic flux balance analyses, inferred dynamic recruitment of four distinct threonine fermentation pathways, including ones with intermediate accrual that supported changing cellular needs for energy, redox metabolism, nitrogen cycling, and growth. Model predictions with (13)C isotopomer analyses of [U-(13)C]threonine metabolites inferred threonine’s reduction to butyrate through the reductive leucine pathway, a finding confirmed by deletion of the hadA 2-hydroxyisocaproate CoA transferase. In vivo metabolomic and metatranscriptomic analyses illustrate how threonine metabolism in C. difficile and the protective commensal Paraclostridium bifermentans impacts pathogen colonization and growth, expanding the range of dual-redox substrates that modulate host risks for disease. Cold Spring Harbor Laboratory 2023-09-18 /pmc/articles/PMC10541586/ /pubmed/37786668 http://dx.doi.org/10.1101/2023.09.18.558167 Text en https://creativecommons.org/licenses/by-nd/4.0/This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, and only so long as attribution is given to the creator. The license allows for commercial use. |
spellingShingle | Article Pavao, Aidan Zhang, Ella Monestier, Auriane Peltier, Johann Dupuy, Bruno Cheng, Leo Bry, Lynn HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile |
title | HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile |
title_full | HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile |
title_fullStr | HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile |
title_full_unstemmed | HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile |
title_short | HRMAS (13)C NMR and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for Clostridioides difficile |
title_sort | hrmas (13)c nmr and genome-scale metabolic modeling identify threonine as a preferred dual redox substrate for clostridioides difficile |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541586/ https://www.ncbi.nlm.nih.gov/pubmed/37786668 http://dx.doi.org/10.1101/2023.09.18.558167 |
work_keys_str_mv | AT pavaoaidan hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile AT zhangella hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile AT monestierauriane hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile AT peltierjohann hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile AT dupuybruno hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile AT chengleo hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile AT brylynn hrmas13cnmrandgenomescalemetabolicmodelingidentifythreonineasapreferreddualredoxsubstrateforclostridioidesdifficile |