Cargando…

Unraveling the Structure of Meclizine Dihydrochloride with MicroED

Meclizine (Antivert, Bonine) is a first-generation H1 antihistamine used in the treatment of motion sickness and vertigo. Despite its wide medical use for over 70 years, its crystal structure and the details of protein-drug interactions remained unknown. In this study, we used microcrystal electron...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Jieye, Unge, Johan, Gonen, Tamir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541648/
https://www.ncbi.nlm.nih.gov/pubmed/37786674
http://dx.doi.org/10.1101/2023.09.05.556418
Descripción
Sumario:Meclizine (Antivert, Bonine) is a first-generation H1 antihistamine used in the treatment of motion sickness and vertigo. Despite its wide medical use for over 70 years, its crystal structure and the details of protein-drug interactions remained unknown. In this study, we used microcrystal electron diffraction (MicroED) to determine the three-dimensional (3D) crystal structure of meclizine dihydrochloride directly from a seemingly amorphous powder. Two racemic enantiomers (R/S) were found in the unit cell, which packed as repetitive double layers in the crystal lattice. The packing was made of multiple strong N−H⋯Cl(−) hydrogen bonding interactions and weak interactions like C−H⋯Cl(−) and pi-stacking. Molecular docking revealed the binding mechanism of meclizine to the histamine H1 receptor. A comparison of the docking complexes between histamine H1 receptor and meclizine or levocetirizine (a second-generation antihistamine) showed the conserved binding sites. This research illustrates the combined use of MicroED and molecular docking in unraveling protein-drug interactions for precision drug design and optimization.