Cargando…

Interactions between polyphenols from Theobroma cacao and Lactobacillales to evaluate the potential of a combined strategy for intestinal free-fatty acid removal

Reducing the absorption of lipids in the gastrointestinal tract is one approach used to manage caloric intake in the fight against excessive weight. Biocompounds, such as polyphenols and probiotics, have been used in this regard. However, some studies have reported that polyphenols have both inhibit...

Descripción completa

Detalles Bibliográficos
Autores principales: Quiroz-Eraso, Samuel, Rodríguez-Castaño, Gina Paola, Acosta-González, Alejandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543767/
https://www.ncbi.nlm.nih.gov/pubmed/37790859
http://dx.doi.org/10.1016/j.crfs.2023.100594
Descripción
Sumario:Reducing the absorption of lipids in the gastrointestinal tract is one approach used to manage caloric intake in the fight against excessive weight. Biocompounds, such as polyphenols and probiotics, have been used in this regard. However, some studies have reported that polyphenols have both inhibitory and stimulatory effects on bacterial growth. This study aimed to investigate the resistance to polyphenol-rich extracts from Theobroma cacao L. of Lactobacillales isolated from the human fecal microbiota of lean volunteers (with high saturated fat consumption), to further the knowledge of the potential combination of these bioactive compounds. The strains were selected using an improved and affordable strategy that allowed the rapid screening of strains with fat-removing capacity. Among 1400 isolates, two strains, Lactobacillus sp. A1 and Pediococcus acidilactici E1, were selected due to their capacity to remove saturated fats from the culture media similar to the reference strain Lactobacillus sp. JBD301. Both isolated strains differed in their resistance to cocoa polyphenols: the extract did not affect the growth of strain A1, but reduced the growth of strain E1. However, the extract did not affect the level of in vitro fat removal by either strain, confirming the potential use of a combination of bacteria and polyphenols as a promising strategy for the intestinal removal of free fatty acids.