Cargando…

KaScape: a sequencing-based method for global characterization of protein‒DNA binding affinity

It is difficult to exhaustively screen all possible DNA binding sequences for a given transcription factor (TF). Here, we developed the KaScape method, in which TFs bind to all possible DNA sequences in the same DNA pool where DNA sequences are prepared by randomized oligo synthesis and the random l...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Hong, Xu, Yongping, Jin, Jianshi, Su, Xiao-dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10547764/
https://www.ncbi.nlm.nih.gov/pubmed/37789131
http://dx.doi.org/10.1038/s41598-023-43426-x
Descripción
Sumario:It is difficult to exhaustively screen all possible DNA binding sequences for a given transcription factor (TF). Here, we developed the KaScape method, in which TFs bind to all possible DNA sequences in the same DNA pool where DNA sequences are prepared by randomized oligo synthesis and the random length can be adjusted to a length such as 4, 5, 6, or 7. After separating bound from unbound double-stranded DNAs (dsDNAs), their sequences are determined by next-generation sequencing. To demonstrate the relative binding affinities of all possible DNA sequences determined by KaScape, we developed three-dimensional KaScape viewing software based on a K-mer graph. We applied KaScape to 12 plant TF family AtWRKY proteins and found that all AtWRKY proteins bound to the core sequence GAC with similar profiles. KaScape can detect not only binding sequences consistent with the consensus W-box “TTGAC(C/T)” but also other sequences with weak affinity. KaScape provides a high-throughput, easy-to-operate, sensitive, and exhaustive method for quantitatively characterizing the relative binding strength of a TF with all possible binding sequences, allowing us to comprehensively characterize the specificity and affinity landscape of transcription factors, particularly for moderate- and low-affinity binding sites.