Cargando…

Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum

Using large language models, we developed a method to efficiently query existing flashcard libraries and select those most relevant to an individual's medical school curricula.

Detalles Bibliográficos
Autores principales: Pendergrast, Tricia, Chalmers, Zachary
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551781/
https://www.ncbi.nlm.nih.gov/pubmed/37728965
http://dx.doi.org/10.2196/48780
_version_ 1785115842808119296
author Pendergrast, Tricia
Chalmers, Zachary
author_facet Pendergrast, Tricia
Chalmers, Zachary
author_sort Pendergrast, Tricia
collection PubMed
description Using large language models, we developed a method to efficiently query existing flashcard libraries and select those most relevant to an individual's medical school curricula.
format Online
Article
Text
id pubmed-10551781
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-105517812023-10-06 Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum Pendergrast, Tricia Chalmers, Zachary JMIR Med Educ Research Letter Using large language models, we developed a method to efficiently query existing flashcard libraries and select those most relevant to an individual's medical school curricula. JMIR Publications 2023-09-20 /pmc/articles/PMC10551781/ /pubmed/37728965 http://dx.doi.org/10.2196/48780 Text en ©Tricia Pendergrast, Zachary Chalmers. Originally published in JMIR Medical Education (https://mededu.jmir.org), 20.09.2023. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Education, is properly cited. The complete bibliographic information, a link to the original publication on https://mededu.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Research Letter
Pendergrast, Tricia
Chalmers, Zachary
Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
title Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
title_full Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
title_fullStr Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
title_full_unstemmed Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
title_short Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
title_sort anki tagger: a generative ai tool for aligning third-party resources to preclinical curriculum
topic Research Letter
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551781/
https://www.ncbi.nlm.nih.gov/pubmed/37728965
http://dx.doi.org/10.2196/48780
work_keys_str_mv AT pendergrasttricia ankitaggeragenerativeaitoolforaligningthirdpartyresourcestopreclinicalcurriculum
AT chalmerszachary ankitaggeragenerativeaitoolforaligningthirdpartyresourcestopreclinicalcurriculum