Cargando…
Anki Tagger: A Generative AI Tool for Aligning Third-Party Resources to Preclinical Curriculum
Using large language models, we developed a method to efficiently query existing flashcard libraries and select those most relevant to an individual's medical school curricula.
Autores principales: | Pendergrast, Tricia, Chalmers, Zachary |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10551781/ https://www.ncbi.nlm.nih.gov/pubmed/37728965 http://dx.doi.org/10.2196/48780 |
Ejemplares similares
-
A Cohort Study Assessing the Impact of Anki as a Spaced Repetition Tool on Academic Performance in Medical School
por: Gilbert, Michael M., et al.
Publicado: (2023) -
Academic and Wellness Outcomes Associated with use of Anki Spaced
Repetition Software in Medical School
por: Wothe, Jillian K, et al.
Publicado: (2023) -
Comparative performance of ATLAS boosted
W taggers using different AI/ML algorithms
por: LeBlanc, Matt
Publicado: (2023) -
Preclerkship Medical Students’ Use of Third-Party Learning Resources
por: Lawrence, Emily C. N., et al.
Publicado: (2023) -
An Analysis of Anki Usage and Strategy of First-Year Medical Students in a Structure and Function Course
por: Harris, David M, et al.
Publicado: (2022)