Cargando…

Height detection of crop divider toes of sugarcane harvester based on Kalman adaptive adjustment

Crop divider toes are an essential device of sugarcane harvester. Moving forward against the ground is a critical way to improve the harvesting rate of lodged sugarcane. Height detection is the basis for precise control of crop divider toes moving forward against the ground. Due to the current probl...

Descripción completa

Detalles Bibliográficos
Autores principales: Wen, Chunming, Yan, Yunzhi, Wu, Wanling, Li, Jianheng, Hou, Bingxu, Cui, Wenxuan, Huang, Youzong, Li, Kaihua, Long, Xiaozhu, Nong, Hongliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10556070/
https://www.ncbi.nlm.nih.gov/pubmed/37798399
http://dx.doi.org/10.1038/s41598-023-43952-8
Descripción
Sumario:Crop divider toes are an essential device of sugarcane harvester. Moving forward against the ground is a critical way to improve the harvesting rate of lodged sugarcane. Height detection is the basis for precise control of crop divider toes moving forward against the ground. Due to the current problem of operating difficulties in manually adjusting the height of crop divider, a height detection system based on a millimeter wave radar sensor was designed to detect the height of crop divider toes from the ground. This paper proposed a height detection method of crop divider toes for sugarcane harvester based on Kalman adaptive adjustment. The data measured by the sensor was pretreated to determine whether the height had changed. Reset the Kalman filter and adjust the parameters when changes occur to improve the filter response speed and ranging accuracy. To adapt to the scenario of quickly adjusting the height of crop divider during the traveling process of sugarcane harvester. A one-way ANOVA test and a two-way ANOVA test were conducted on a simulated test platform. The results of the one-way ANOVA test showed that both forward speed and vegetation cover thickness had a significant effect on height detection accuracy. The results of the two-way ANOVA test showed that the interaction of forward speed and vegetation cover thickness did not have a significant effect on ranging accuracy. It was verified through experiments that both the ranging accuracy and the response speed of height change were significantly improved after the processing of the method in this paper. The mean square error after processing was lower than 2.5 cm. The feasibility of the height detection system was verified by field trials. The results of this study will provide a reference for the design of automatic elevation of crop divider.