Cargando…
Helicase Activity Modulation with On-Demand Light-Based Conformational Control
[Image: see text] Engineering a protein variant with a desired role relies on deep knowledge of the relationship between a protein's native structure and function. Using our structural understanding of a regulatory subdomain found in a family of DNA helicases, we engineered novel helicases for...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557133/ https://www.ncbi.nlm.nih.gov/pubmed/37739407 http://dx.doi.org/10.1021/jacs.3c05254 |
Sumario: | [Image: see text] Engineering a protein variant with a desired role relies on deep knowledge of the relationship between a protein's native structure and function. Using our structural understanding of a regulatory subdomain found in a family of DNA helicases, we engineered novel helicases for which the subdomain orientation is designed to switch between unwinding-inactive and -active conformations upon trans–cis isomerization of an azobenzene-based crosslinker. This on-demand light-based conformational control directly alters helicase activity as demonstrated by both bulk phase experiments and single-molecule optical tweezers analysis of one of the engineered helicases. The “opto-helicase” may be useful in future applications that require spatiotemporal control of DNA hybridization states. |
---|