Cargando…
Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO(2)max in f...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557702/ https://www.ncbi.nlm.nih.gov/pubmed/37808658 http://dx.doi.org/10.1101/2023.09.26.558914 |
_version_ | 1785117138728517632 |
---|---|
author | Rubenstein, Aliza B. Smith, Gregory R. Zhang, Zidong Chen, Xi Chambers, Toby L. Ruf-Zamojski, Frederique Mendelev, Natalia Cheng, Wan Sze Zamojski, Michel Amper, Mary Anne S. Nair, Venugopalan D. Marderstein, Andrew R. Montgomery, Stephen B. Troyanskaya, Olga G. Zaslavsky, Elena Trappe, Todd Trappe, Scott Sealfon, Stuart C. |
author_facet | Rubenstein, Aliza B. Smith, Gregory R. Zhang, Zidong Chen, Xi Chambers, Toby L. Ruf-Zamojski, Frederique Mendelev, Natalia Cheng, Wan Sze Zamojski, Michel Amper, Mary Anne S. Nair, Venugopalan D. Marderstein, Andrew R. Montgomery, Stephen B. Troyanskaya, Olga G. Zaslavsky, Elena Trappe, Todd Trappe, Scott Sealfon, Stuart C. |
author_sort | Rubenstein, Aliza B. |
collection | PubMed |
description | Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO(2)max in four subjects, as well as in matched time of day samples from two supine resting circadian controls. High quality same-cell RNA-seq and ATAC-seq data were obtained from 37,154 nuclei comprising 14 cell types. Among muscle fiber types, both shared and fiber-type specific regulatory programs were identified. Single-cell circuit analysis identified distinct adaptations in fast, slow and intermediate fibers as well as LUM-expressing FAP cells, involving a total of 328 transcription factors (TFs) acting at altered accessibility sites regulating 2,025 genes. These data and circuit mapping provide single-cell insight into the processes underlying tissue and metabolic remodeling responses to exercise. |
format | Online Article Text |
id | pubmed-10557702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105577022023-10-07 Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise Rubenstein, Aliza B. Smith, Gregory R. Zhang, Zidong Chen, Xi Chambers, Toby L. Ruf-Zamojski, Frederique Mendelev, Natalia Cheng, Wan Sze Zamojski, Michel Amper, Mary Anne S. Nair, Venugopalan D. Marderstein, Andrew R. Montgomery, Stephen B. Troyanskaya, Olga G. Zaslavsky, Elena Trappe, Todd Trappe, Scott Sealfon, Stuart C. bioRxiv Article Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO(2)max in four subjects, as well as in matched time of day samples from two supine resting circadian controls. High quality same-cell RNA-seq and ATAC-seq data were obtained from 37,154 nuclei comprising 14 cell types. Among muscle fiber types, both shared and fiber-type specific regulatory programs were identified. Single-cell circuit analysis identified distinct adaptations in fast, slow and intermediate fibers as well as LUM-expressing FAP cells, involving a total of 328 transcription factors (TFs) acting at altered accessibility sites regulating 2,025 genes. These data and circuit mapping provide single-cell insight into the processes underlying tissue and metabolic remodeling responses to exercise. Cold Spring Harbor Laboratory 2023-10-09 /pmc/articles/PMC10557702/ /pubmed/37808658 http://dx.doi.org/10.1101/2023.09.26.558914 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Rubenstein, Aliza B. Smith, Gregory R. Zhang, Zidong Chen, Xi Chambers, Toby L. Ruf-Zamojski, Frederique Mendelev, Natalia Cheng, Wan Sze Zamojski, Michel Amper, Mary Anne S. Nair, Venugopalan D. Marderstein, Andrew R. Montgomery, Stephen B. Troyanskaya, Olga G. Zaslavsky, Elena Trappe, Todd Trappe, Scott Sealfon, Stuart C. Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise |
title | Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise |
title_full | Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise |
title_fullStr | Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise |
title_full_unstemmed | Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise |
title_short | Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise |
title_sort | integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557702/ https://www.ncbi.nlm.nih.gov/pubmed/37808658 http://dx.doi.org/10.1101/2023.09.26.558914 |
work_keys_str_mv | AT rubensteinalizab integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT smithgregoryr integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT zhangzidong integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT chenxi integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT chamberstobyl integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT rufzamojskifrederique integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT mendelevnatalia integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT chengwansze integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT zamojskimichel integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT ampermaryannes integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT nairvenugopaland integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT mardersteinandrewr integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT montgomerystephenb integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT troyanskayaolgag integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT zaslavskyelena integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT trappetodd integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT trappescott integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise AT sealfonstuartc integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise |