Cargando…

Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise

Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO(2)max in f...

Descripción completa

Detalles Bibliográficos
Autores principales: Rubenstein, Aliza B., Smith, Gregory R., Zhang, Zidong, Chen, Xi, Chambers, Toby L., Ruf-Zamojski, Frederique, Mendelev, Natalia, Cheng, Wan Sze, Zamojski, Michel, Amper, Mary Anne S., Nair, Venugopalan D., Marderstein, Andrew R., Montgomery, Stephen B., Troyanskaya, Olga G., Zaslavsky, Elena, Trappe, Todd, Trappe, Scott, Sealfon, Stuart C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557702/
https://www.ncbi.nlm.nih.gov/pubmed/37808658
http://dx.doi.org/10.1101/2023.09.26.558914
_version_ 1785117138728517632
author Rubenstein, Aliza B.
Smith, Gregory R.
Zhang, Zidong
Chen, Xi
Chambers, Toby L.
Ruf-Zamojski, Frederique
Mendelev, Natalia
Cheng, Wan Sze
Zamojski, Michel
Amper, Mary Anne S.
Nair, Venugopalan D.
Marderstein, Andrew R.
Montgomery, Stephen B.
Troyanskaya, Olga G.
Zaslavsky, Elena
Trappe, Todd
Trappe, Scott
Sealfon, Stuart C.
author_facet Rubenstein, Aliza B.
Smith, Gregory R.
Zhang, Zidong
Chen, Xi
Chambers, Toby L.
Ruf-Zamojski, Frederique
Mendelev, Natalia
Cheng, Wan Sze
Zamojski, Michel
Amper, Mary Anne S.
Nair, Venugopalan D.
Marderstein, Andrew R.
Montgomery, Stephen B.
Troyanskaya, Olga G.
Zaslavsky, Elena
Trappe, Todd
Trappe, Scott
Sealfon, Stuart C.
author_sort Rubenstein, Aliza B.
collection PubMed
description Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO(2)max in four subjects, as well as in matched time of day samples from two supine resting circadian controls. High quality same-cell RNA-seq and ATAC-seq data were obtained from 37,154 nuclei comprising 14 cell types. Among muscle fiber types, both shared and fiber-type specific regulatory programs were identified. Single-cell circuit analysis identified distinct adaptations in fast, slow and intermediate fibers as well as LUM-expressing FAP cells, involving a total of 328 transcription factors (TFs) acting at altered accessibility sites regulating 2,025 genes. These data and circuit mapping provide single-cell insight into the processes underlying tissue and metabolic remodeling responses to exercise.
format Online
Article
Text
id pubmed-10557702
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105577022023-10-07 Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise Rubenstein, Aliza B. Smith, Gregory R. Zhang, Zidong Chen, Xi Chambers, Toby L. Ruf-Zamojski, Frederique Mendelev, Natalia Cheng, Wan Sze Zamojski, Michel Amper, Mary Anne S. Nair, Venugopalan D. Marderstein, Andrew R. Montgomery, Stephen B. Troyanskaya, Olga G. Zaslavsky, Elena Trappe, Todd Trappe, Scott Sealfon, Stuart C. bioRxiv Article Endurance exercise is an important health modifier. We studied cell-type specific adaptations of human skeletal muscle to acute endurance exercise using single-nucleus (sn) multiome sequencing in human vastus lateralis samples collected before and 3.5 hours after 40 min exercise at 70% VO(2)max in four subjects, as well as in matched time of day samples from two supine resting circadian controls. High quality same-cell RNA-seq and ATAC-seq data were obtained from 37,154 nuclei comprising 14 cell types. Among muscle fiber types, both shared and fiber-type specific regulatory programs were identified. Single-cell circuit analysis identified distinct adaptations in fast, slow and intermediate fibers as well as LUM-expressing FAP cells, involving a total of 328 transcription factors (TFs) acting at altered accessibility sites regulating 2,025 genes. These data and circuit mapping provide single-cell insight into the processes underlying tissue and metabolic remodeling responses to exercise. Cold Spring Harbor Laboratory 2023-10-09 /pmc/articles/PMC10557702/ /pubmed/37808658 http://dx.doi.org/10.1101/2023.09.26.558914 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Rubenstein, Aliza B.
Smith, Gregory R.
Zhang, Zidong
Chen, Xi
Chambers, Toby L.
Ruf-Zamojski, Frederique
Mendelev, Natalia
Cheng, Wan Sze
Zamojski, Michel
Amper, Mary Anne S.
Nair, Venugopalan D.
Marderstein, Andrew R.
Montgomery, Stephen B.
Troyanskaya, Olga G.
Zaslavsky, Elena
Trappe, Todd
Trappe, Scott
Sealfon, Stuart C.
Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
title Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
title_full Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
title_fullStr Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
title_full_unstemmed Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
title_short Integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
title_sort integrated single-cell multiome analysis reveals muscle fiber-type gene regulatory circuitry modulated by endurance exercise
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10557702/
https://www.ncbi.nlm.nih.gov/pubmed/37808658
http://dx.doi.org/10.1101/2023.09.26.558914
work_keys_str_mv AT rubensteinalizab integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT smithgregoryr integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT zhangzidong integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT chenxi integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT chamberstobyl integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT rufzamojskifrederique integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT mendelevnatalia integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT chengwansze integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT zamojskimichel integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT ampermaryannes integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT nairvenugopaland integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT mardersteinandrewr integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT montgomerystephenb integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT troyanskayaolgag integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT zaslavskyelena integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT trappetodd integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT trappescott integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise
AT sealfonstuartc integratedsinglecellmultiomeanalysisrevealsmusclefibertypegeneregulatorycircuitrymodulatedbyenduranceexercise