Cargando…

Ubiquitin-specific peptidase 25 exacerbated osteoarthritis progression through facilitating TXNIP ubiquitination and NLRP3 inflammasome activation

Several members of the ubiquitin-specific proteases (USPs) family have been revealed to regulate the progression of osteoarthritis (OA). The current study aimed to investigate the role and the underlying mechanism of USP25 in IL-1β-induced chondrocytes and OA rat model. It was discovered that IL-1β...

Descripción completa

Detalles Bibliográficos
Autores principales: Sui, Jie, Dai, Fei, Shi, Jiusheng, Zhou, Changcheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561454/
https://www.ncbi.nlm.nih.gov/pubmed/37814350
http://dx.doi.org/10.1186/s13018-023-04083-y
Descripción
Sumario:Several members of the ubiquitin-specific proteases (USPs) family have been revealed to regulate the progression of osteoarthritis (OA). The current study aimed to investigate the role and the underlying mechanism of USP25 in IL-1β-induced chondrocytes and OA rat model. It was discovered that IL-1β stimulation upregulated USP25, increased ROS level, and suppressed cell viability in rat chondrocytes. Besides, USP25 knockdown alleviated IL-1β-induced injury by decreasing ROS level, attenuating pyroptosis, and downregulating the expression of IL-18, NLRP3, GSDMD-N, active caspase-1, MMP-3, and MMP-13. Furthermore, we discovered that USP25 affected the IL-1β-induced injury in chondrocytes in a ROS-dependent manner. Moreover, USP25 was revealed to interact with TXNIP, and USP25 knockdown increased the ubiquitination of TXNIP. The pro-OA effect of USP25 abundance could be overturned by TXNIP suppression in IL-1β-induced chondrocytes. Finally, in vivo experiment results showed that USP25 inhibition alleviated cartilage destruction in OA rats. In conclusion, we demonstrated that USP25 stimulated the overproduction of ROS to activate the NLRP3 inflammasome via regulating TXNIP, resulting in increased pyroptosis and inflammation in OA.