Cargando…
A morpheein equilibrium regulates catalysis in phosphoserine phosphatase SerB2 from Mycobacterium tuberculosis
Mycobacterium tuberculosis phosphoserine phosphatase MtSerB2 is of interest as a new antituberculosis target due to its essential metabolic role in L-serine biosynthesis and effector functions in infected cells. Previous works indicated that MtSerB2 is regulated through an oligomeric transition indu...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10564941/ https://www.ncbi.nlm.nih.gov/pubmed/37817000 http://dx.doi.org/10.1038/s42003-023-05402-z |
Sumario: | Mycobacterium tuberculosis phosphoserine phosphatase MtSerB2 is of interest as a new antituberculosis target due to its essential metabolic role in L-serine biosynthesis and effector functions in infected cells. Previous works indicated that MtSerB2 is regulated through an oligomeric transition induced by L-Ser that could serve as a basis for the design of selective allosteric inhibitors. However, the mechanism underlying this transition remains highly elusive due to the lack of experimental structural data. Here we describe a structural, biophysical, and enzymological characterisation of MtSerB2 oligomerisation in the presence and absence of L-Ser. We show that MtSerB2 coexists in dimeric, trimeric, and tetrameric forms of different activity levels interconverting through a conformationally flexible monomeric state, which is not observed in two near-identical mycobacterial orthologs. This morpheein behaviour exhibited by MtSerB2 lays the foundation for future allosteric drug discovery and provides a starting point to the understanding of its peculiar multifunctional moonlighting properties. |
---|