Cargando…
General acid-mediated aminolactone formation using unactivated alkenes
Spirocyclic butyrolactones and butenolides are widespread structural motifs in bioactive substances. Despite their prevalence, a simple method ensuring their direct preparation from exocyclic alkenes, ideally in a late-stage context, remains elusive. Herein, we report direct aminolactone formation u...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566462/ https://www.ncbi.nlm.nih.gov/pubmed/37829023 http://dx.doi.org/10.1039/d3sc04073a |
Sumario: | Spirocyclic butyrolactones and butenolides are widespread structural motifs in bioactive substances. Despite their prevalence, a simple method ensuring their direct preparation from exocyclic alkenes, ideally in a late-stage context, remains elusive. Herein, we report direct aminolactone formation using unactivated alkenes which addresses this gap, employing cheap and readily available reactants. The method relies on the hijacking of a cationic aminoalkylation pathway and affords (spiro)aminolactones with excellent functional group tolerance and chemoselectivity. The synthetic versatility of the products is demonstrated through a range of transformations, notably exploiting stereospecific rearrangement chemistry to produce sterically congested scaffolds. |
---|