Cargando…

A tunable family of CAAC-ruthenium olefin metathesis catalysts modularly derived from a large-scale produced ibuprofen intermediate

A series of tunable CAAC-based ruthenium benzylidene complexes with increased lipophilicity derived from a ketone being a large-scale produced key substrate for a popular nonsteroidal anti-inflammatory drug—ibuprofen was obtained and tested in various olefin metathesis transformations. As a group, t...

Descripción completa

Detalles Bibliográficos
Autores principales: Sytniczuk, Adrian, Struzik, Filip, Grela, Karol, Kajetanowicz, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10566500/
https://www.ncbi.nlm.nih.gov/pubmed/37829018
http://dx.doi.org/10.1039/d3sc03849a
Descripción
Sumario:A series of tunable CAAC-based ruthenium benzylidene complexes with increased lipophilicity derived from a ketone being a large-scale produced key substrate for a popular nonsteroidal anti-inflammatory drug—ibuprofen was obtained and tested in various olefin metathesis transformations. As a group, these catalysts exhibited higher activity than their known analogues containing a smaller and less lipophilic phenyl substituent on the α-carbon atom, but in individual reactions, the size of the N-aryl moiety was revealed as a decisive factor. For example, in the cross-metathesis of methyl oleate with ethylene (ethenolysis)—a reaction with growing industrial potential—the best results were obtained when the N-aryl contained an isopropyl or tert-butyl substituent in the ortho position. At the same time, in the RCM, CM, and self-CM transformations involving larger olefinic substrates, the catalysts with smaller aryl-bearing CAAC ligands, where methyl and ethyl groups occupy ortho, ortho’ positions performed better. This offers a great deal of tunability and allows for selection of the best catalyst for a given reaction while keeping the general structure (and manufacturing method) of the ibuprofen-intermediate derived CAAC ligand the same.