Cargando…

Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing

The clinical translation of many biomolecular therapeutics has been hindered by undesirable pharmacokinetic (PK) properties, inadequate membrane permeability, poor endosomal escape and cytosolic delivery, and/or susceptibility to degradation. Overcoming these challenges merits the development of nan...

Descripción completa

Detalles Bibliográficos
Autores principales: Pagendarm, Hayden M., Stone, Payton T., Kimmel, Blaise R., Baljon, Jessalyn J., Aziz, Mina H., Pastora, Lucinda E., Hubert, Lauren, Roth, Eric W., Almunif, Sultan, Scott, Evan A., Wilson, John T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568979/
https://www.ncbi.nlm.nih.gov/pubmed/37753868
http://dx.doi.org/10.1039/d3nr02874g
_version_ 1785119469149880320
author Pagendarm, Hayden M.
Stone, Payton T.
Kimmel, Blaise R.
Baljon, Jessalyn J.
Aziz, Mina H.
Pastora, Lucinda E.
Hubert, Lauren
Roth, Eric W.
Almunif, Sultan
Scott, Evan A.
Wilson, John T.
author_facet Pagendarm, Hayden M.
Stone, Payton T.
Kimmel, Blaise R.
Baljon, Jessalyn J.
Aziz, Mina H.
Pastora, Lucinda E.
Hubert, Lauren
Roth, Eric W.
Almunif, Sultan
Scott, Evan A.
Wilson, John T.
author_sort Pagendarm, Hayden M.
collection PubMed
description The clinical translation of many biomolecular therapeutics has been hindered by undesirable pharmacokinetic (PK) properties, inadequate membrane permeability, poor endosomal escape and cytosolic delivery, and/or susceptibility to degradation. Overcoming these challenges merits the development of nanoscale drug carriers (nanocarriers) to improve the delivery of therapeutic cargo. Herein, we implement a flash nanoprecipitation (FNP) approach to produce nanocarriers of diverse vesicular morphologies by using various molecular weight PEG-bl-DEAEMA-co-BMA (PEG-DB) polymers. We demonstrated that FNP can produce uniform (PDI < 0.1) particles after 5 impingements, and that by varying the copolymer hydrophilic mass fraction, FNP enables access to a diverse variety of nanoarchitectures including micelles, unilamellar vesicles (polymersomes), and multi-compartment vesicles (MCVs). We synthesized a library of 2 kDa PEG block copolymers, with DEAEMA-co-BMA second block molecular weights of 3, 6, 12, 15, 20, and 30 kDa. All formulations were both pH responsive, endosomolytic, and capable of loading and cytosolically delivering small negatively charged molecules – albeit to different degrees. Using a B16.F10 melanoma model, we showcased the therapeutic potential of a lead FNP formulated PEG-DB nanocarrier, encapsulating the cyclic dinucleotide (CDN) cGAMP to activate the stimulator of interferon genes (STING) pathway in a therapeutically relevant context. Collectively, these data demonstrate that an FNP process can be used to formulate pH-responsive nanocarriers of diverse morphologies using a PEG-DB polymer system. As FNP is an industrially scalable process, these data address the critical translational challenge of producing PEG-DB nanoparticles at scale. Furthermore, the diverse morphologies produced may specialize in the delivery of distinct biomolecular cargos for other therapeutic applications, implicating the therapeutic potential of this platform in an array of disease applications.
format Online
Article
Text
id pubmed-10568979
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-105689792023-10-13 Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing Pagendarm, Hayden M. Stone, Payton T. Kimmel, Blaise R. Baljon, Jessalyn J. Aziz, Mina H. Pastora, Lucinda E. Hubert, Lauren Roth, Eric W. Almunif, Sultan Scott, Evan A. Wilson, John T. Nanoscale Chemistry The clinical translation of many biomolecular therapeutics has been hindered by undesirable pharmacokinetic (PK) properties, inadequate membrane permeability, poor endosomal escape and cytosolic delivery, and/or susceptibility to degradation. Overcoming these challenges merits the development of nanoscale drug carriers (nanocarriers) to improve the delivery of therapeutic cargo. Herein, we implement a flash nanoprecipitation (FNP) approach to produce nanocarriers of diverse vesicular morphologies by using various molecular weight PEG-bl-DEAEMA-co-BMA (PEG-DB) polymers. We demonstrated that FNP can produce uniform (PDI < 0.1) particles after 5 impingements, and that by varying the copolymer hydrophilic mass fraction, FNP enables access to a diverse variety of nanoarchitectures including micelles, unilamellar vesicles (polymersomes), and multi-compartment vesicles (MCVs). We synthesized a library of 2 kDa PEG block copolymers, with DEAEMA-co-BMA second block molecular weights of 3, 6, 12, 15, 20, and 30 kDa. All formulations were both pH responsive, endosomolytic, and capable of loading and cytosolically delivering small negatively charged molecules – albeit to different degrees. Using a B16.F10 melanoma model, we showcased the therapeutic potential of a lead FNP formulated PEG-DB nanocarrier, encapsulating the cyclic dinucleotide (CDN) cGAMP to activate the stimulator of interferon genes (STING) pathway in a therapeutically relevant context. Collectively, these data demonstrate that an FNP process can be used to formulate pH-responsive nanocarriers of diverse morphologies using a PEG-DB polymer system. As FNP is an industrially scalable process, these data address the critical translational challenge of producing PEG-DB nanoparticles at scale. Furthermore, the diverse morphologies produced may specialize in the delivery of distinct biomolecular cargos for other therapeutic applications, implicating the therapeutic potential of this platform in an array of disease applications. The Royal Society of Chemistry 2023-09-19 /pmc/articles/PMC10568979/ /pubmed/37753868 http://dx.doi.org/10.1039/d3nr02874g Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Pagendarm, Hayden M.
Stone, Payton T.
Kimmel, Blaise R.
Baljon, Jessalyn J.
Aziz, Mina H.
Pastora, Lucinda E.
Hubert, Lauren
Roth, Eric W.
Almunif, Sultan
Scott, Evan A.
Wilson, John T.
Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
title Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
title_full Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
title_fullStr Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
title_full_unstemmed Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
title_short Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
title_sort engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10568979/
https://www.ncbi.nlm.nih.gov/pubmed/37753868
http://dx.doi.org/10.1039/d3nr02874g
work_keys_str_mv AT pagendarmhaydenm engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT stonepaytont engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT kimmelblaiser engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT baljonjessalynj engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT azizminah engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT pastoralucindae engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT hubertlauren engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT rothericw engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT almunifsultan engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT scottevana engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing
AT wilsonjohnt engineeringendosomolyticnanocarriersofdiversemorphologiesusingconfinedimpingementjetmixing