Cargando…
Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma †
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572209/ https://www.ncbi.nlm.nih.gov/pubmed/37830582 http://dx.doi.org/10.3390/cells12192367 |
_version_ | 1785120181363671040 |
---|---|
author | Rajan, Pradeep Kumar Udoh, Utibe-Abasi S. Nakafuku, Yuto Pierre, Sandrine V. Sanabria, Juan |
author_facet | Rajan, Pradeep Kumar Udoh, Utibe-Abasi S. Nakafuku, Yuto Pierre, Sandrine V. Sanabria, Juan |
author_sort | Rajan, Pradeep Kumar |
collection | PubMed |
description | Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC. |
format | Online Article Text |
id | pubmed-10572209 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-105722092023-10-14 Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma † Rajan, Pradeep Kumar Udoh, Utibe-Abasi S. Nakafuku, Yuto Pierre, Sandrine V. Sanabria, Juan Cells Article Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. In metabolic dysfunction-associated steatohepatitis (MASH)-related HCC, cellular redox imbalance from metabolic disturbances leads to dysregulation of the α1-subunit of the Na/K-ATPase (ATP1A1) signalosome. We have recently reported that the normalization of this pathway exhibited tumor suppressor activity in MASH-HCC. We hypothesized that dysregulated signaling from the ATP1A1, mediated by cellular metabolic stress, promotes aberrant epigenetic modifications including abnormal post-translational histone modifications and dysfunctional autophagic activity, leading to HCC development and progression. Increased H3K9 acetylation (H3K9ac) and H3K9 tri-methylation (H3K9me3) were observed in human HCC cell lines, HCC-xenograft and MASH-HCC mouse models, and epigenetic changes were associated with decreased cell autophagy in HCC cell lines. Inhibition of the pro-autophagic transcription factor FoxO1 was associated with elevated protein carbonylation and decreased levels of reduced glutathione (GSH). In contrast, normalization of the ATP1A1 signaling significantly decreased H3K9ac and H3K9me3, in vitro and in vivo, with concomitant nuclear localization of FoxO1, heightening cell autophagy and cancer-cell apoptotic activities in treated HCC cell lines. Our results showed the critical role of the ATP1A1 signalosome in HCC development and progression through epigenetic modifications and impaired cell autophagy activity, highlighting the importance of the ATP1A1 pathway as a potential therapeutic target for HCC. MDPI 2023-09-27 /pmc/articles/PMC10572209/ /pubmed/37830582 http://dx.doi.org/10.3390/cells12192367 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rajan, Pradeep Kumar Udoh, Utibe-Abasi S. Nakafuku, Yuto Pierre, Sandrine V. Sanabria, Juan Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma † |
title | Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma † |
title_full | Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma † |
title_fullStr | Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma † |
title_full_unstemmed | Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma † |
title_short | Normalization of the ATP1A1 Signalosome Rescinds Epigenetic Modifications and Induces Cell Autophagy in Hepatocellular Carcinoma † |
title_sort | normalization of the atp1a1 signalosome rescinds epigenetic modifications and induces cell autophagy in hepatocellular carcinoma † |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572209/ https://www.ncbi.nlm.nih.gov/pubmed/37830582 http://dx.doi.org/10.3390/cells12192367 |
work_keys_str_mv | AT rajanpradeepkumar normalizationoftheatp1a1signalosomerescindsepigeneticmodificationsandinducescellautophagyinhepatocellularcarcinoma AT udohutibeabasis normalizationoftheatp1a1signalosomerescindsepigeneticmodificationsandinducescellautophagyinhepatocellularcarcinoma AT nakafukuyuto normalizationoftheatp1a1signalosomerescindsepigeneticmodificationsandinducescellautophagyinhepatocellularcarcinoma AT pierresandrinev normalizationoftheatp1a1signalosomerescindsepigeneticmodificationsandinducescellautophagyinhepatocellularcarcinoma AT sanabriajuan normalizationoftheatp1a1signalosomerescindsepigeneticmodificationsandinducescellautophagyinhepatocellularcarcinoma |