Cargando…
Is Mushy Tuna Syndrome a Growing Problem for the Tuna Industry?
Reducing food loss and waste is crucial for a sustainable global food system and an efficient use of natural resources. Fast-growing tuna provides a key contribution to global nutrition targets; however, reports suggest that an appreciable proportion of the catch is lost from its value chain due to...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10572669/ https://www.ncbi.nlm.nih.gov/pubmed/37835244 http://dx.doi.org/10.3390/foods12193590 |
Sumario: | Reducing food loss and waste is crucial for a sustainable global food system and an efficient use of natural resources. Fast-growing tuna provides a key contribution to global nutrition targets; however, reports suggest that an appreciable proportion of the catch is lost from its value chain due to flesh quality issues, one of which is Mushy Tuna Syndrome (MTS). MTS-affected tuna flesh becomes soft and pasty, unfit for canning or human consumption, resulting in high wastage of partially processed material. We investigated the prevalence of MTS globally by surveying the tuna industry using a questionnaire. Of the responses from 32 companies across 14 nations, 97% acknowledged MTS as an issue that predominantly affects skipjack (Katsuwonus pelamis) tuna. The cost of rejects reported by participants from 2017 to 2019 varied greatly, from less than 1000 USD per year to over 1 million USD. The median cost was over 60,000 USD and the average rejection rate was 1.8%. The occurrence of MTS was noted to be seasonal, mainly in the summer months. More than half of the respondents who experience MTS reported an increasing trend of occurrence. Industry perceptions suggest MTS causes are associated with environmental, physiological, and biological factors. The survey results highlight that MTS is prevalent in the industry and demonstrate the need to identify amelioration strategies for the fishers and processors to minimise loss and maximise resource efficiency. |
---|