Cargando…
FGCN: Image-Fused Point Cloud Semantic Segmentation with Fusion Graph Convolutional Network
In interpreting a scene for numerous applications, including autonomous driving and robotic navigation, semantic segmentation is crucial. Compared to single-modal data, multi-modal data allow us to extract a richer set of features, which is the benefit of improving segmentation accuracy and effect....
Autores principales: | Zhang, Kun, Chen, Rui, Peng, Zidong, Zhu, Yawei, Wang, Xiaohong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575317/ https://www.ncbi.nlm.nih.gov/pubmed/37837167 http://dx.doi.org/10.3390/s23198338 |
Ejemplares similares
-
Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion
por: Du, Jing, et al.
Publicado: (2021) -
Spatial Aggregation Net: Point Cloud Semantic Segmentation Based on Multi-Directional Convolution
por: Cai, Guorong, et al.
Publicado: (2019) -
Fused Projection-Based Point Cloud Segmentation
por: Kellner, Maximilian, et al.
Publicado: (2022) -
FF-Net: Feature-Fusion-Based Network for Semantic Segmentation of 3D Plant Point Cloud
por: Guo, Xindong, et al.
Publicado: (2023) -
A graph-based approach for simultaneous semantic and instance segmentation of plant 3D point clouds
por: Mirande, Katia, et al.
Publicado: (2022)