Cargando…
Vehicle Detection and Tracking with Roadside LiDAR Using Improved ResNet18 and the Hungarian Algorithm
By the end of the 2020s, full autonomy in autonomous driving may become commercially viable in certain regions. However, achieving Level 5 autonomy requires crucial collaborations between vehicles and infrastructure, necessitating high-speed data processing and low-latency capabilities. This paper i...
Autores principales: | Lin, Ciyun, Sun, Ganghao, Wu, Dayong, Xie, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575351/ https://www.ncbi.nlm.nih.gov/pubmed/37836973 http://dx.doi.org/10.3390/s23198143 |
Ejemplares similares
-
A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet
por: Wang, Aili, et al.
Publicado: (2020) -
Vehicle Detection under Adverse Weather from Roadside LiDAR Data
por: Wu, Jianqing, et al.
Publicado: (2020) -
Efficient Stereo Depth Estimation for Pseudo-LiDAR: A Self-Supervised Approach Based on Multi-Input ResNet Encoder
por: Hossain, Sabir, et al.
Publicado: (2023) -
Real-Time Queue Length Detection with Roadside LiDAR Data
por: Wu, Jianqing, et al.
Publicado: (2020) -
Research on an Adaptive Method for the Angle Calibration of Roadside LiDAR Point Clouds
por: Wen, Xin, et al.
Publicado: (2023)