Cargando…
Graph Reinforcement Learning-Based Decision-Making Technology for Connected and Autonomous Vehicles: Framework, Review, and Future Trends
The proper functioning of connected and autonomous vehicles (CAVs) is crucial for the safety and efficiency of future intelligent transport systems. Meanwhile, transitioning to fully autonomous driving requires a long period of mixed autonomy traffic, including both CAVs and human-driven vehicles. T...
Autores principales: | Liu, Qi, Li, Xueyuan, Tang, Yujie, Gao, Xin, Yang, Fan, Li, Zirui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575438/ https://www.ncbi.nlm.nih.gov/pubmed/37837063 http://dx.doi.org/10.3390/s23198229 |
Ejemplares similares
-
Generalized Single-Vehicle-Based Graph Reinforcement Learning for Decision-Making in Autonomous Driving
por: Yang, Fan, et al.
Publicado: (2022) -
Multi-Agent Decision-Making Modes in Uncertain Interactive Traffic Scenarios via Graph Convolution-Based Deep Reinforcement Learning
por: Gao, Xin, et al.
Publicado: (2022) -
Human-like Decision Making for Autonomous Vehicles at the Intersection Using Inverse Reinforcement Learning
por: Wu, Zheng, et al.
Publicado: (2022) -
A Blockchain Framework for Securing Connected and Autonomous Vehicles
por: Rathee, Geetanjali, et al.
Publicado: (2019) -
Human decision-making biases in the moral dilemmas of autonomous vehicles
por: Frank, Darius-Aurel, et al.
Publicado: (2019)