Cargando…

Challenging an old paradigm by demonstrating transition metal-like chemistry at a neutral nonmetal center

We describe nonmetal adducts of the phosphorus center of terminal phosphinidene complexes using classical C- and N-ligands from metal coordination chemistry. The nature of the L-P bond has been analyzed by various theoretical methods including a refined method on the variation of the Laplacian of el...

Descripción completa

Detalles Bibliográficos
Autores principales: Biskup, David, Schnakenburg, Gregor, Boeré, René T., Espinosa Ferao, Arturo, Streubel, Rainer K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575908/
https://www.ncbi.nlm.nih.gov/pubmed/37833259
http://dx.doi.org/10.1038/s41467-023-42127-3
Descripción
Sumario:We describe nonmetal adducts of the phosphorus center of terminal phosphinidene complexes using classical C- and N-ligands from metal coordination chemistry. The nature of the L-P bond has been analyzed by various theoretical methods including a refined method on the variation of the Laplacian of electron density ∇(2)ρ along the L-P bond path. Studies on thermal stability reveal stark differences between N-ligands such as N-methyl imidazole and C-ligands such as tert-butyl isocyanide, including ligand exchange reactions and a surprising formation of white phosphorus. A milestone is the transformation of a nonmetal-bound isocyanide into phosphaguanidine or an acyclic bisaminocarbene bound to phosphorus; the latter is analogous to the chemistry of transition metal-bound isocyanides, and the former reveals the differences. This example has been studied via cutting-edge DFT calculations leading to two pathways differently favored depending on variations in steric demand. This study reveals the emergence of organometallic from coordination chemistry of a neutral nonmetal center.