Cargando…
Challenging an old paradigm by demonstrating transition metal-like chemistry at a neutral nonmetal center
We describe nonmetal adducts of the phosphorus center of terminal phosphinidene complexes using classical C- and N-ligands from metal coordination chemistry. The nature of the L-P bond has been analyzed by various theoretical methods including a refined method on the variation of the Laplacian of el...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575908/ https://www.ncbi.nlm.nih.gov/pubmed/37833259 http://dx.doi.org/10.1038/s41467-023-42127-3 |
Sumario: | We describe nonmetal adducts of the phosphorus center of terminal phosphinidene complexes using classical C- and N-ligands from metal coordination chemistry. The nature of the L-P bond has been analyzed by various theoretical methods including a refined method on the variation of the Laplacian of electron density ∇(2)ρ along the L-P bond path. Studies on thermal stability reveal stark differences between N-ligands such as N-methyl imidazole and C-ligands such as tert-butyl isocyanide, including ligand exchange reactions and a surprising formation of white phosphorus. A milestone is the transformation of a nonmetal-bound isocyanide into phosphaguanidine or an acyclic bisaminocarbene bound to phosphorus; the latter is analogous to the chemistry of transition metal-bound isocyanides, and the former reveals the differences. This example has been studied via cutting-edge DFT calculations leading to two pathways differently favored depending on variations in steric demand. This study reveals the emergence of organometallic from coordination chemistry of a neutral nonmetal center. |
---|