Cargando…

Robust Strategy for Hit-to-Lead Discovery: NMR for SAR

[Image: see text] Establishing robust structure–activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditur...

Descripción completa

Detalles Bibliográficos
Autores principales: Larda, Sacha T., Ayotte, Yann, Denk, Maria M., Coote, Paul, Heffron, Gregory, Bendahan, David, Shahout, Fatma, Girard, Nicolas, Iddir, Mustapha, Bouchard, Patricia, Bilodeau, Francois, Woo, Simon, Farmer, Luc J., LaPlante, Steven R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578354/
https://www.ncbi.nlm.nih.gov/pubmed/37732695
http://dx.doi.org/10.1021/acs.jmedchem.3c00656
Descripción
Sumario:[Image: see text] Establishing robust structure–activity relationships (SARs) is key to successful drug discovery campaigns, yet it often remains elusive due to screening and hit validation artifacts (false positives and false negatives), which frequently result in unproductive downstream expenditures of time and resources. To address this issue, we developed an integrative biophysics-driven strategy that expedites hit-to-lead discovery, mitigates false positives/negatives and common hit validation errors, and provides a robust approach to obtaining accurate binding and affinity measurements. The advantage of this method is that it vastly improves the clarity and reproducibility for affinity-driven SAR by monitoring and eliminating confounding factors. We demonstrate the ease at which high-quality micromolar binders can be generated from the initial millimolar fragment screening hits against an “undruggable” protein target, HRas.