Cargando…
Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial
The personalized titration and optimization of insulin regimens for treatment of type 2 diabetes (T2D) are resource-demanding healthcare tasks. Here we propose a model-based reinforcement learning (RL) framework (called RL-DITR), which learns the optimal insulin regimen by analyzing glycemic state r...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579102/ https://www.ncbi.nlm.nih.gov/pubmed/37710000 http://dx.doi.org/10.1038/s41591-023-02552-9 |