Cargando…
Optimized glycemic control of type 2 diabetes with reinforcement learning: a proof-of-concept trial
The personalized titration and optimization of insulin regimens for treatment of type 2 diabetes (T2D) are resource-demanding healthcare tasks. Here we propose a model-based reinforcement learning (RL) framework (called RL-DITR), which learns the optimal insulin regimen by analyzing glycemic state r...
Autores principales: | Wang, Guangyu, Liu, Xiaohong, Ying, Zhen, Yang, Guoxing, Chen, Zhiwei, Liu, Zhiwen, Zhang, Min, Yan, Hongmei, Lu, Yuxing, Gao, Yuanxu, Xue, Kanmin, Li, Xiaoying, Chen, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579102/ https://www.ncbi.nlm.nih.gov/pubmed/37710000 http://dx.doi.org/10.1038/s41591-023-02552-9 |
Ejemplares similares
-
A proof of concept reinforcement learning based tool for non parametric population pharmacokinetics workflow optimization
por: Otalvaro, J. D., et al.
Publicado: (2022) -
Pilot proof of concept clinical trials of Stochastic Targeted (STAR) glycemic control
por: Evans, Alicia, et al.
Publicado: (2011) -
Classification of Postprandial Glycemic Status with Application to Insulin Dosing in Type 1 Diabetes—An In Silico Proof-of-Concept
por: Cappon, Giacomo, et al.
Publicado: (2019) -
Proof of concept demonstration of optimal composite MRI endpoints for clinical trials
por: Edland, Steven D., et al.
Publicado: (2016) -
Ranking Power Spectra: A Proof of Concept
por: Yu, Xilin, et al.
Publicado: (2019)