Cargando…

In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex

Unsatisfactory outcomes following long-term multidrug treatment in patients with Mycobacterium avium complex (MAC) pulmonary disease have urged us to develop novel antibiotics. Thiopeptides, a class of peptide antibiotics derived from natural products, have potential as drug candidates that target b...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Jiyun, Kim, Lee-Han, Lee, Ju Mi, Choi, Sangwon, Son, Young-Jin, Hwang, Hee-Jong, Shin, Sung Jae
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580953/
https://www.ncbi.nlm.nih.gov/pubmed/37594284
http://dx.doi.org/10.1128/spectrum.01825-23
_version_ 1785122046784569344
author Park, Jiyun
Kim, Lee-Han
Lee, Ju Mi
Choi, Sangwon
Son, Young-Jin
Hwang, Hee-Jong
Shin, Sung Jae
author_facet Park, Jiyun
Kim, Lee-Han
Lee, Ju Mi
Choi, Sangwon
Son, Young-Jin
Hwang, Hee-Jong
Shin, Sung Jae
author_sort Park, Jiyun
collection PubMed
description Unsatisfactory outcomes following long-term multidrug treatment in patients with Mycobacterium avium complex (MAC) pulmonary disease have urged us to develop novel antibiotics. Thiopeptides, a class of peptide antibiotics derived from natural products, have potential as drug candidates that target bacterial ribosomes, but drug development has been hampered due to their extremely poor solubility. Here, we evaluated three new compounds (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2 with enhanced aqueous solubility; the derivatives were generated based on structure-activity relationship analysis. We conducted in vitro drug susceptibility and intracellular antimycobacterial activity testing of the three thiopeptide derivatives against various MAC strains, including macrolide-resistant MAC clinical isolates. These compounds showed low MICs against MAC, similar to that of clarithromycin (CLR). In particular, two compounds, AJ-037 and AJ-206, had intracellular antimycobacterial activities, along with synergistic effects with CLR, and inhibited the growth of MAC inside macrophages. Moreover, these two compounds showed in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing cross-resistance with CLR. Taken together, the results of the current study suggest that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infection, including for macrolide-resistant MAC strains. IMPORTANCE: Novel antibiotics for the treatment of MAC infection are urgently needed because the treatment outcomes using the standard regimen for Mycobacterium avium complex (MAC) pulmonary disease remain unsatisfactory. Here, we evaluated three novel thiopeptide derivatives (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2, and they were confirmed to be effective against macrolide-susceptible and macrolide-resistant MAC. Our thiopeptide derivatives have enhanced aqueous solubility through structural modifications of poorly soluble thiopeptides. The thiopeptide derivatives showed minimal inhibitory concentrations against MAC that were comparable to clarithromycin (CLR). Notably, two compounds, AJ-037 and AJ-206, exhibited intracellular antimycobacterial activities and acted synergistically with CLR to hinder the growth of MAC within macrophages. Additionally, these compounds demonstrated in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing any cross-resistance with CLR. We believe that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infections, including macrolide-resistant MAC strains.
format Online
Article
Text
id pubmed-10580953
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-105809532023-10-18 In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex Park, Jiyun Kim, Lee-Han Lee, Ju Mi Choi, Sangwon Son, Young-Jin Hwang, Hee-Jong Shin, Sung Jae Microbiol Spectr Research Article Unsatisfactory outcomes following long-term multidrug treatment in patients with Mycobacterium avium complex (MAC) pulmonary disease have urged us to develop novel antibiotics. Thiopeptides, a class of peptide antibiotics derived from natural products, have potential as drug candidates that target bacterial ribosomes, but drug development has been hampered due to their extremely poor solubility. Here, we evaluated three new compounds (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2 with enhanced aqueous solubility; the derivatives were generated based on structure-activity relationship analysis. We conducted in vitro drug susceptibility and intracellular antimycobacterial activity testing of the three thiopeptide derivatives against various MAC strains, including macrolide-resistant MAC clinical isolates. These compounds showed low MICs against MAC, similar to that of clarithromycin (CLR). In particular, two compounds, AJ-037 and AJ-206, had intracellular antimycobacterial activities, along with synergistic effects with CLR, and inhibited the growth of MAC inside macrophages. Moreover, these two compounds showed in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing cross-resistance with CLR. Taken together, the results of the current study suggest that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infection, including for macrolide-resistant MAC strains. IMPORTANCE: Novel antibiotics for the treatment of MAC infection are urgently needed because the treatment outcomes using the standard regimen for Mycobacterium avium complex (MAC) pulmonary disease remain unsatisfactory. Here, we evaluated three novel thiopeptide derivatives (AJ-037, AJ-039, and AJ-206) derived from the thiopeptide micrococcin P2, and they were confirmed to be effective against macrolide-susceptible and macrolide-resistant MAC. Our thiopeptide derivatives have enhanced aqueous solubility through structural modifications of poorly soluble thiopeptides. The thiopeptide derivatives showed minimal inhibitory concentrations against MAC that were comparable to clarithromycin (CLR). Notably, two compounds, AJ-037 and AJ-206, exhibited intracellular antimycobacterial activities and acted synergistically with CLR to hinder the growth of MAC within macrophages. Additionally, these compounds demonstrated in vitro and intracellular anti-MAC activities against macrolide-resistant MAC strains without showing any cross-resistance with CLR. We believe that AJ-037 and AJ-206 can be promising anti-MAC agents for the treatment of MAC infections, including macrolide-resistant MAC strains. American Society for Microbiology 2023-08-18 /pmc/articles/PMC10580953/ /pubmed/37594284 http://dx.doi.org/10.1128/spectrum.01825-23 Text en Copyright © 2023 Park et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Park, Jiyun
Kim, Lee-Han
Lee, Ju Mi
Choi, Sangwon
Son, Young-Jin
Hwang, Hee-Jong
Shin, Sung Jae
In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex
title In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex
title_full In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex
title_fullStr In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex
title_full_unstemmed In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex
title_short In vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant Mycobacterium avium complex
title_sort in vitro and intracellular activities of novel thiopeptide derivatives against macrolide-susceptible and macrolide-resistant mycobacterium avium complex
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580953/
https://www.ncbi.nlm.nih.gov/pubmed/37594284
http://dx.doi.org/10.1128/spectrum.01825-23
work_keys_str_mv AT parkjiyun invitroandintracellularactivitiesofnovelthiopeptidederivativesagainstmacrolidesusceptibleandmacrolideresistantmycobacteriumaviumcomplex
AT kimleehan invitroandintracellularactivitiesofnovelthiopeptidederivativesagainstmacrolidesusceptibleandmacrolideresistantmycobacteriumaviumcomplex
AT leejumi invitroandintracellularactivitiesofnovelthiopeptidederivativesagainstmacrolidesusceptibleandmacrolideresistantmycobacteriumaviumcomplex
AT choisangwon invitroandintracellularactivitiesofnovelthiopeptidederivativesagainstmacrolidesusceptibleandmacrolideresistantmycobacteriumaviumcomplex
AT sonyoungjin invitroandintracellularactivitiesofnovelthiopeptidederivativesagainstmacrolidesusceptibleandmacrolideresistantmycobacteriumaviumcomplex
AT hwangheejong invitroandintracellularactivitiesofnovelthiopeptidederivativesagainstmacrolidesusceptibleandmacrolideresistantmycobacteriumaviumcomplex
AT shinsungjae invitroandintracellularactivitiesofnovelthiopeptidederivativesagainstmacrolidesusceptibleandmacrolideresistantmycobacteriumaviumcomplex