Cargando…
An interpretable machine learning pipeline based on transcriptomics predicts phenotypes of lupus patients
Machine learning (ML) has the potential to identify subsets of patients with distinct phenotypes from gene expression data. However, phenotype prediction using ML has often relied on identifying important genes without a systems biology context. To address this, we created an interpretable ML approa...
Autores principales: | Leventhal, Emily L., Daamen, Andrea R., Grammer, Amrie C., Lipsky, Peter E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10582499/ https://www.ncbi.nlm.nih.gov/pubmed/37860757 http://dx.doi.org/10.1016/j.isci.2023.108042 |
Ejemplares similares
-
Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features
por: Daamen, Andrea R., et al.
Publicado: (2023) -
B cell abnormalities in systemic lupus erythematosus
por: Grammer, Amrie C, et al.
Publicado: (2003) -
Molecular mechanisms governing the progression of nephritis in lupus prone mice and human lupus patients
por: Daamen, Andrea R., et al.
Publicado: (2023) -
Machine learning approaches to predict lupus disease activity from gene expression data
por: Kegerreis, Brian, et al.
Publicado: (2019) -
A comprehensive approach to identify approved drugs and treatments for repositioning as therapies for systemic lupus erythematosus
por: Grammer, Amrie C, et al.
Publicado: (2014)