Cargando…

Inhibition of fatty acid oxidation enables heart regeneration in adult mice

Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration(1,2). Here, to explore whether metabolic reprogramming can overcome this bar...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiang, Wu, Fan, Günther, Stefan, Looso, Mario, Kuenne, Carsten, Zhang, Ting, Wiesnet, Marion, Klatt, Stephan, Zukunft, Sven, Fleming, Ingrid, Poschet, Gernot, Wietelmann, Astrid, Atzberger, Ann, Potente, Michael, Yuan, Xuejun, Braun, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584682/
https://www.ncbi.nlm.nih.gov/pubmed/37758950
http://dx.doi.org/10.1038/s41586-023-06585-5
_version_ 1785122792479391744
author Li, Xiang
Wu, Fan
Günther, Stefan
Looso, Mario
Kuenne, Carsten
Zhang, Ting
Wiesnet, Marion
Klatt, Stephan
Zukunft, Sven
Fleming, Ingrid
Poschet, Gernot
Wietelmann, Astrid
Atzberger, Ann
Potente, Michael
Yuan, Xuejun
Braun, Thomas
author_facet Li, Xiang
Wu, Fan
Günther, Stefan
Looso, Mario
Kuenne, Carsten
Zhang, Ting
Wiesnet, Marion
Klatt, Stephan
Zukunft, Sven
Fleming, Ingrid
Poschet, Gernot
Wietelmann, Astrid
Atzberger, Ann
Potente, Michael
Yuan, Xuejun
Braun, Thomas
author_sort Li, Xiang
collection PubMed
description Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration(1,2). Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia–reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. (3)). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.
format Online
Article
Text
id pubmed-10584682
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105846822023-10-20 Inhibition of fatty acid oxidation enables heart regeneration in adult mice Li, Xiang Wu, Fan Günther, Stefan Looso, Mario Kuenne, Carsten Zhang, Ting Wiesnet, Marion Klatt, Stephan Zukunft, Sven Fleming, Ingrid Poschet, Gernot Wietelmann, Astrid Atzberger, Ann Potente, Michael Yuan, Xuejun Braun, Thomas Nature Article Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration(1,2). Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia–reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. (3)). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts. Nature Publishing Group UK 2023-09-27 2023 /pmc/articles/PMC10584682/ /pubmed/37758950 http://dx.doi.org/10.1038/s41586-023-06585-5 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Li, Xiang
Wu, Fan
Günther, Stefan
Looso, Mario
Kuenne, Carsten
Zhang, Ting
Wiesnet, Marion
Klatt, Stephan
Zukunft, Sven
Fleming, Ingrid
Poschet, Gernot
Wietelmann, Astrid
Atzberger, Ann
Potente, Michael
Yuan, Xuejun
Braun, Thomas
Inhibition of fatty acid oxidation enables heart regeneration in adult mice
title Inhibition of fatty acid oxidation enables heart regeneration in adult mice
title_full Inhibition of fatty acid oxidation enables heart regeneration in adult mice
title_fullStr Inhibition of fatty acid oxidation enables heart regeneration in adult mice
title_full_unstemmed Inhibition of fatty acid oxidation enables heart regeneration in adult mice
title_short Inhibition of fatty acid oxidation enables heart regeneration in adult mice
title_sort inhibition of fatty acid oxidation enables heart regeneration in adult mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584682/
https://www.ncbi.nlm.nih.gov/pubmed/37758950
http://dx.doi.org/10.1038/s41586-023-06585-5
work_keys_str_mv AT lixiang inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT wufan inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT guntherstefan inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT loosomario inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT kuennecarsten inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT zhangting inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT wiesnetmarion inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT klattstephan inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT zukunftsven inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT flemingingrid inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT poschetgernot inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT wietelmannastrid inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT atzbergerann inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT potentemichael inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT yuanxuejun inhibitionoffattyacidoxidationenablesheartregenerationinadultmice
AT braunthomas inhibitionoffattyacidoxidationenablesheartregenerationinadultmice