Cargando…
Inhibition of fatty acid oxidation enables heart regeneration in adult mice
Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration(1,2). Here, to explore whether metabolic reprogramming can overcome this bar...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584682/ https://www.ncbi.nlm.nih.gov/pubmed/37758950 http://dx.doi.org/10.1038/s41586-023-06585-5 |
_version_ | 1785122792479391744 |
---|---|
author | Li, Xiang Wu, Fan Günther, Stefan Looso, Mario Kuenne, Carsten Zhang, Ting Wiesnet, Marion Klatt, Stephan Zukunft, Sven Fleming, Ingrid Poschet, Gernot Wietelmann, Astrid Atzberger, Ann Potente, Michael Yuan, Xuejun Braun, Thomas |
author_facet | Li, Xiang Wu, Fan Günther, Stefan Looso, Mario Kuenne, Carsten Zhang, Ting Wiesnet, Marion Klatt, Stephan Zukunft, Sven Fleming, Ingrid Poschet, Gernot Wietelmann, Astrid Atzberger, Ann Potente, Michael Yuan, Xuejun Braun, Thomas |
author_sort | Li, Xiang |
collection | PubMed |
description | Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration(1,2). Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia–reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. (3)). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts. |
format | Online Article Text |
id | pubmed-10584682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105846822023-10-20 Inhibition of fatty acid oxidation enables heart regeneration in adult mice Li, Xiang Wu, Fan Günther, Stefan Looso, Mario Kuenne, Carsten Zhang, Ting Wiesnet, Marion Klatt, Stephan Zukunft, Sven Fleming, Ingrid Poschet, Gernot Wietelmann, Astrid Atzberger, Ann Potente, Michael Yuan, Xuejun Braun, Thomas Nature Article Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration(1,2). Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia–reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. (3)). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts. Nature Publishing Group UK 2023-09-27 2023 /pmc/articles/PMC10584682/ /pubmed/37758950 http://dx.doi.org/10.1038/s41586-023-06585-5 Text en © The Author(s) 2023, corrected publication 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Li, Xiang Wu, Fan Günther, Stefan Looso, Mario Kuenne, Carsten Zhang, Ting Wiesnet, Marion Klatt, Stephan Zukunft, Sven Fleming, Ingrid Poschet, Gernot Wietelmann, Astrid Atzberger, Ann Potente, Michael Yuan, Xuejun Braun, Thomas Inhibition of fatty acid oxidation enables heart regeneration in adult mice |
title | Inhibition of fatty acid oxidation enables heart regeneration in adult mice |
title_full | Inhibition of fatty acid oxidation enables heart regeneration in adult mice |
title_fullStr | Inhibition of fatty acid oxidation enables heart regeneration in adult mice |
title_full_unstemmed | Inhibition of fatty acid oxidation enables heart regeneration in adult mice |
title_short | Inhibition of fatty acid oxidation enables heart regeneration in adult mice |
title_sort | inhibition of fatty acid oxidation enables heart regeneration in adult mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584682/ https://www.ncbi.nlm.nih.gov/pubmed/37758950 http://dx.doi.org/10.1038/s41586-023-06585-5 |
work_keys_str_mv | AT lixiang inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT wufan inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT guntherstefan inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT loosomario inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT kuennecarsten inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT zhangting inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT wiesnetmarion inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT klattstephan inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT zukunftsven inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT flemingingrid inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT poschetgernot inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT wietelmannastrid inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT atzbergerann inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT potentemichael inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT yuanxuejun inhibitionoffattyacidoxidationenablesheartregenerationinadultmice AT braunthomas inhibitionoffattyacidoxidationenablesheartregenerationinadultmice |