Cargando…
SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies
Properly integrating spatially resolved transcriptomics (SRT) generated from different batches into a unified gene-spatial coordinate system could enable the construction of a comprehensive spatial transcriptome atlas. Here, we propose SPIRAL, consisting of two consecutive modules: SPIRAL-integratio...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10590036/ https://www.ncbi.nlm.nih.gov/pubmed/37864231 http://dx.doi.org/10.1186/s13059-023-03078-6 |
Sumario: | Properly integrating spatially resolved transcriptomics (SRT) generated from different batches into a unified gene-spatial coordinate system could enable the construction of a comprehensive spatial transcriptome atlas. Here, we propose SPIRAL, consisting of two consecutive modules: SPIRAL-integration, with graph domain adaptation-based data integration, and SPIRAL-alignment, with cluster-aware optimal transport-based coordination alignment. We verify SPIRAL with both synthetic and real SRT datasets. By encoding spatial correlations to gene expressions, SPIRAL-integration surpasses state-of-the-art methods in both batch effect removal and joint spatial domain identification. By aligning spots cluster-wise, SPIRAL-alignment achieves more accurate coordinate alignments than existing methods. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03078-6. |
---|