Cargando…
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592234/ https://www.ncbi.nlm.nih.gov/pubmed/37300831 http://dx.doi.org/10.1016/j.celrep.2023.112574 |
_version_ | 1785124303889498112 |
---|---|
author | Dura-Bernal, Salvador Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V.S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M.G. Lytton, William W. |
author_facet | Dura-Bernal, Salvador Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V.S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M.G. Lytton, William W. |
author_sort | Dura-Bernal, Salvador |
collection | PubMed |
description | Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and cell-type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors. |
format | Online Article Text |
id | pubmed-10592234 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
record_format | MEDLINE/PubMed |
spelling | pubmed-105922342023-10-23 Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics Dura-Bernal, Salvador Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V.S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M.G. Lytton, William W. Cell Rep Article Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and cell-type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors. 2023-06-27 2023-06-09 /pmc/articles/PMC10592234/ /pubmed/37300831 http://dx.doi.org/10.1016/j.celrep.2023.112574 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Article Dura-Bernal, Salvador Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V.S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M.G. Lytton, William W. Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title | Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_full | Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_fullStr | Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_full_unstemmed | Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_short | Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
title_sort | multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592234/ https://www.ncbi.nlm.nih.gov/pubmed/37300831 http://dx.doi.org/10.1016/j.celrep.2023.112574 |
work_keys_str_mv | AT durabernalsalvador multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT neymotinsamuela multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT suterbenjamina multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT dacrejoshua multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT moreirajoaovs multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT urdapilletaeugenio multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT schiemannjulia multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT duguidian multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT shepherdgordonmg multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics AT lyttonwilliamw multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics |