Cargando…

Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics

Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions,...

Descripción completa

Detalles Bibliográficos
Autores principales: Dura-Bernal, Salvador, Neymotin, Samuel A., Suter, Benjamin A., Dacre, Joshua, Moreira, Joao V.S., Urdapilleta, Eugenio, Schiemann, Julia, Duguid, Ian, Shepherd, Gordon M.G., Lytton, William W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592234/
https://www.ncbi.nlm.nih.gov/pubmed/37300831
http://dx.doi.org/10.1016/j.celrep.2023.112574
_version_ 1785124303889498112
author Dura-Bernal, Salvador
Neymotin, Samuel A.
Suter, Benjamin A.
Dacre, Joshua
Moreira, Joao V.S.
Urdapilleta, Eugenio
Schiemann, Julia
Duguid, Ian
Shepherd, Gordon M.G.
Lytton, William W.
author_facet Dura-Bernal, Salvador
Neymotin, Samuel A.
Suter, Benjamin A.
Dacre, Joshua
Moreira, Joao V.S.
Urdapilleta, Eugenio
Schiemann, Julia
Duguid, Ian
Shepherd, Gordon M.G.
Lytton, William W.
author_sort Dura-Bernal, Salvador
collection PubMed
description Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and cell-type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors.
format Online
Article
Text
id pubmed-10592234
institution National Center for Biotechnology Information
language English
publishDate 2023
record_format MEDLINE/PubMed
spelling pubmed-105922342023-10-23 Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics Dura-Bernal, Salvador Neymotin, Samuel A. Suter, Benjamin A. Dacre, Joshua Moreira, Joao V.S. Urdapilleta, Eugenio Schiemann, Julia Duguid, Ian Shepherd, Gordon M.G. Lytton, William W. Cell Rep Article Understanding cortical function requires studying multiple scales: molecular, cellular, circuit, and behavioral. We develop a multiscale, biophysically detailed model of mouse primary motor cortex (M1) with over 10,000 neurons and 30 million synapses. Neuron types, densities, spatial distributions, morphologies, biophysics, connectivity, and dendritic synapse locations are constrained by experimental data. The model includes long-range inputs from seven thalamic and cortical regions and noradrenergic inputs. Connectivity depends on cell class and cortical depth at sublaminar resolution. The model accurately predicts in vivo layer- and cell-type-specific responses (firing rates and LFP) associated with behavioral states (quiet wakefulness and movement) and experimental manipulations (noradrenaline receptor blockade and thalamus inactivation). We generate mechanistic hypotheses underlying the observed activity and analyzed low-dimensional population latent dynamics. This quantitative theoretical framework can be used to integrate and interpret M1 experimental data and sheds light on the cell-type-specific multiscale dynamics associated with several experimental conditions and behaviors. 2023-06-27 2023-06-09 /pmc/articles/PMC10592234/ /pubmed/37300831 http://dx.doi.org/10.1016/j.celrep.2023.112574 Text en https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Article
Dura-Bernal, Salvador
Neymotin, Samuel A.
Suter, Benjamin A.
Dacre, Joshua
Moreira, Joao V.S.
Urdapilleta, Eugenio
Schiemann, Julia
Duguid, Ian
Shepherd, Gordon M.G.
Lytton, William W.
Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
title Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
title_full Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
title_fullStr Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
title_full_unstemmed Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
title_short Multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
title_sort multiscale model of primary motor cortex circuits predicts in vivo cell-type-specific, behavioral state-dependent dynamics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592234/
https://www.ncbi.nlm.nih.gov/pubmed/37300831
http://dx.doi.org/10.1016/j.celrep.2023.112574
work_keys_str_mv AT durabernalsalvador multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT neymotinsamuela multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT suterbenjamina multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT dacrejoshua multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT moreirajoaovs multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT urdapilletaeugenio multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT schiemannjulia multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT duguidian multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT shepherdgordonmg multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics
AT lyttonwilliamw multiscalemodelofprimarymotorcortexcircuitspredictsinvivocelltypespecificbehavioralstatedependentdynamics