Cargando…

Computational mechanisms underlying motivation to earn symbolic reinforcers

Reinforcement learning (RL) is a theoretical framework that describes how agents learn to select options that maximize rewards and minimize punishments over time. We often make choices, however, to obtain symbolic reinforcers (e.g. money, points) that can later be exchanged for primary reinforcers (...

Descripción completa

Detalles Bibliográficos
Autores principales: Burk, Diana C., Taswell, Craig, Tang, Hua, Averbeck, Bruno B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592730/
https://www.ncbi.nlm.nih.gov/pubmed/37873311
http://dx.doi.org/10.1101/2023.10.11.561900