Cargando…

Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway

The endoplasmic reticulum (ER) stores large amounts of calcium (Ca(2+)), and the controlled release of ER Ca(2+) regulates a myriad of cellular functions. Although altered ER Ca(2+) homeostasis is known to induce ER stress, the mechanisms by which ER Ca(2+) imbalance activate ER stress pathways are...

Descripción completa

Detalles Bibliográficos
Autores principales: Pathak, Trayambak, Benson, J. Cory, Johnson, Martin T., Xin, Ping, Abdelnaby, Ahmed Emam, Walter, Vonn, Koltun, Walter A., Yochum, Gregory S., Hempel, Nadine, Trebak, Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592933/
https://www.ncbi.nlm.nih.gov/pubmed/37873177
http://dx.doi.org/10.1101/2023.10.02.560521
_version_ 1785124366689763328
author Pathak, Trayambak
Benson, J. Cory
Johnson, Martin T.
Xin, Ping
Abdelnaby, Ahmed Emam
Walter, Vonn
Koltun, Walter A.
Yochum, Gregory S.
Hempel, Nadine
Trebak, Mohamed
author_facet Pathak, Trayambak
Benson, J. Cory
Johnson, Martin T.
Xin, Ping
Abdelnaby, Ahmed Emam
Walter, Vonn
Koltun, Walter A.
Yochum, Gregory S.
Hempel, Nadine
Trebak, Mohamed
author_sort Pathak, Trayambak
collection PubMed
description The endoplasmic reticulum (ER) stores large amounts of calcium (Ca(2+)), and the controlled release of ER Ca(2+) regulates a myriad of cellular functions. Although altered ER Ca(2+) homeostasis is known to induce ER stress, the mechanisms by which ER Ca(2+) imbalance activate ER stress pathways are poorly understood. Stromal-interacting molecules STIM1 and STIM2 are two structurally homologous ER-resident Ca(2+) sensors that synergistically regulate Ca(2+) influx into the cytosol through Orai Ca(2+) channels for subsequent signaling to transcription and ER Ca(2+) refilling. Here, we demonstrate that reduced STIM2, but not STIM1, in colorectal cancer (CRC) is associated with poor patient prognosis. Loss of STIM2 causes SERCA2-dependent increase in ER Ca(2+), increased protein translation and transcriptional and metabolic rewiring supporting increased tumor size, invasion, and metastasis. Mechanistically, STIM2 loss activates cMyc and the PERK/ATF4 branch of ER stress in an Orai-independent manner. Therefore, STIM2 and PERK/ATF4 could be exploited for prognosis or in targeted therapies to inhibit CRC tumor growth and metastasis.
format Online
Article
Text
id pubmed-10592933
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105929332023-10-24 Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway Pathak, Trayambak Benson, J. Cory Johnson, Martin T. Xin, Ping Abdelnaby, Ahmed Emam Walter, Vonn Koltun, Walter A. Yochum, Gregory S. Hempel, Nadine Trebak, Mohamed bioRxiv Article The endoplasmic reticulum (ER) stores large amounts of calcium (Ca(2+)), and the controlled release of ER Ca(2+) regulates a myriad of cellular functions. Although altered ER Ca(2+) homeostasis is known to induce ER stress, the mechanisms by which ER Ca(2+) imbalance activate ER stress pathways are poorly understood. Stromal-interacting molecules STIM1 and STIM2 are two structurally homologous ER-resident Ca(2+) sensors that synergistically regulate Ca(2+) influx into the cytosol through Orai Ca(2+) channels for subsequent signaling to transcription and ER Ca(2+) refilling. Here, we demonstrate that reduced STIM2, but not STIM1, in colorectal cancer (CRC) is associated with poor patient prognosis. Loss of STIM2 causes SERCA2-dependent increase in ER Ca(2+), increased protein translation and transcriptional and metabolic rewiring supporting increased tumor size, invasion, and metastasis. Mechanistically, STIM2 loss activates cMyc and the PERK/ATF4 branch of ER stress in an Orai-independent manner. Therefore, STIM2 and PERK/ATF4 could be exploited for prognosis or in targeted therapies to inhibit CRC tumor growth and metastasis. Cold Spring Harbor Laboratory 2023-10-03 /pmc/articles/PMC10592933/ /pubmed/37873177 http://dx.doi.org/10.1101/2023.10.02.560521 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Pathak, Trayambak
Benson, J. Cory
Johnson, Martin T.
Xin, Ping
Abdelnaby, Ahmed Emam
Walter, Vonn
Koltun, Walter A.
Yochum, Gregory S.
Hempel, Nadine
Trebak, Mohamed
Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway
title Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway
title_full Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway
title_fullStr Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway
title_full_unstemmed Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway
title_short Loss of STIM2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and PERK-ATF4 endoplasmic reticulum stress pathway
title_sort loss of stim2 in colorectal cancer drives growth and metastasis through metabolic reprogramming and perk-atf4 endoplasmic reticulum stress pathway
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592933/
https://www.ncbi.nlm.nih.gov/pubmed/37873177
http://dx.doi.org/10.1101/2023.10.02.560521
work_keys_str_mv AT pathaktrayambak lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT bensonjcory lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT johnsonmartint lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT xinping lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT abdelnabyahmedemam lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT waltervonn lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT koltunwaltera lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT yochumgregorys lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT hempelnadine lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway
AT trebakmohamed lossofstim2incolorectalcancerdrivesgrowthandmetastasisthroughmetabolicreprogrammingandperkatf4endoplasmicreticulumstresspathway