Cargando…
Predicting the effect of CRISPR-Cas9-based epigenome editing
Epigenetic regulation orchestrates mammalian transcription, but functional links between them remain elusive. To tackle this problem, we here use epigenomic and transcriptomic data from 13 ENCODE cell types to train machine learning models to predict gene expression from histone post-translational m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10592942/ https://www.ncbi.nlm.nih.gov/pubmed/37873127 http://dx.doi.org/10.1101/2023.10.03.560674 |
Sumario: | Epigenetic regulation orchestrates mammalian transcription, but functional links between them remain elusive. To tackle this problem, we here use epigenomic and transcriptomic data from 13 ENCODE cell types to train machine learning models to predict gene expression from histone post-translational modifications (PTMs), achieving transcriptome-wide correlations of ~ 0.70 – 0.79 for most samples. In addition to recapitulating known associations between histone PTMs and expression patterns, our models predict that acetylation of histone subunit H3 lysine residue 27 (H3K27ac) near the transcription start site (TSS) significantly increases expression levels. To validate this prediction experimentally and investigate how engineered vs. natural deposition of H3K27ac might differentially affect expression, we apply the synthetic dCas9-p300 histone acetyltransferase system to 8 genes in the HEK293T cell line. Further, to facilitate model building, we perform MNase-seq to map genome-wide nucleosome occupancy levels in HEK293T. We observe that our models perform well in accurately ranking relative fold changes among genes in response to the dCas9-p300 system; however, their ability to rank fold changes within individual genes is noticeably diminished compared to predicting expression across cell types from their native epigenetic signatures. Our findings highlight the need for more comprehensive genome-scale epigenome editing datasets, better understanding of the actual modifications made by epigenome editing tools, and improved causal models that transfer better from endogenous cellular measurements to perturbation experiments. Together these improvements would facilitate the ability to understand and predictably control the dynamic human epigenome with consequences for human health. |
---|