Cargando…
Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages
BACKGROUND: Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594853/ https://www.ncbi.nlm.nih.gov/pubmed/37872624 http://dx.doi.org/10.1186/s12974-023-02929-0 |
_version_ | 1785124740049928192 |
---|---|
author | Gitik, Miri Elberg, Gerard Reichert, Fanny Tal, Michael Rotshenker, Shlomo |
author_facet | Gitik, Miri Elberg, Gerard Reichert, Fanny Tal, Michael Rotshenker, Shlomo |
author_sort | Gitik, Miri |
collection | PubMed |
description | BACKGROUND: Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS: Using CD47 null (CD47−/−) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS: As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47−/− mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47−/− mice. Furthermore, CD47-deleted macrophages from CD47−/− mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS: This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS). |
format | Online Article Text |
id | pubmed-10594853 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-105948532023-10-25 Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages Gitik, Miri Elberg, Gerard Reichert, Fanny Tal, Michael Rotshenker, Shlomo J Neuroinflammation Research BACKGROUND: Myelin that surrounds axons breaks in trauma and disease; e.g., peripheral nerve and spinal cord injuries (PNI and SCI) and multiple sclerosis (MS). Resulting myelin debris hinders repair if not effectively scavenged by Schwann cells and macrophages in PNI and by microglia in SCI and MS. We showed previously that myelin debris evades phagocytosis as CD47 on myelin ligates SIRPα (signal regulatory protein-α) on macrophages and microglia, triggering SIRPα to inhibit phagocytosis in phagocytes. Using PNI as a model, we tested the in vivo significance of SIRPα-dependent phagocytosis inhibition in SIRPα null mice, showing that SIRPα deletion leads to accelerated myelin debris clearance, axon regeneration and recovery of function from PNI. Herein, we tested how deletion of CD47, a SIRPα ligand and a cell surface receptor on Schwann cells and phagocytes, affects recovery from PNI. METHODS: Using CD47 null (CD47−/−) and wild type mice, we studied myelin disruption/dismantling and debris clearance, axon regeneration and recovery of function from PNI. RESULTS: As expected from CD47 on myelin acting as a SIRPα ligand that normally triggers SIRPα-dependent phagocytosis inhibition in phagocytes, myelin debris clearance, axon regeneration and function recovery were all faster in CD47−/− mice than in wild type mice. Unexpectedly compared with wild type mice, myelin debris clearance started sooner and CD47-deleted Schwann cells displayed enhanced disruption/dismantling and scavenging of myelin in CD47−/− mice. Furthermore, CD47-deleted macrophages from CD47−/− mice phagocytosed more myelin debris than CD47-expressing phagocytes from wild type mice. CONCLUSIONS: This study reveals two novel normally occurring CD47-dependent mechanisms that impede myelin debris clearance. First, CD47 expressed on Schwann cells inhibits myelin disruption/dismantling and debris scavenging in Schwann cells. Second, CD47 expressed on macrophages inhibits myelin debris phagocytosis in phagocytes. The two add to a third mechanism that we previously documented whereby CD47 on myelin ligates SIRPα on macrophages and microglia, triggering SIRPα-dependent phagocytosis inhibition in phagocytes. Thus, CD47 plays multiple inhibitory roles that combined impede myelin debris clearance, leading to delayed recovery from PNI. Similar inhibitory roles in microglia may hinder recovery from other pathologies in which repair depends on efficient phagocytosis (e.g., SCI and MS). BioMed Central 2023-10-23 /pmc/articles/PMC10594853/ /pubmed/37872624 http://dx.doi.org/10.1186/s12974-023-02929-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Gitik, Miri Elberg, Gerard Reichert, Fanny Tal, Michael Rotshenker, Shlomo Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages |
title | Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages |
title_full | Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages |
title_fullStr | Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages |
title_full_unstemmed | Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages |
title_short | Deletion of CD47 from Schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in Schwann cells and augments myelin debris phagocytosis in macrophages |
title_sort | deletion of cd47 from schwann cells and macrophages hastens myelin disruption/dismantling and scavenging in schwann cells and augments myelin debris phagocytosis in macrophages |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10594853/ https://www.ncbi.nlm.nih.gov/pubmed/37872624 http://dx.doi.org/10.1186/s12974-023-02929-0 |
work_keys_str_mv | AT gitikmiri deletionofcd47fromschwanncellsandmacrophageshastensmyelindisruptiondismantlingandscavenginginschwanncellsandaugmentsmyelindebrisphagocytosisinmacrophages AT elberggerard deletionofcd47fromschwanncellsandmacrophageshastensmyelindisruptiondismantlingandscavenginginschwanncellsandaugmentsmyelindebrisphagocytosisinmacrophages AT reichertfanny deletionofcd47fromschwanncellsandmacrophageshastensmyelindisruptiondismantlingandscavenginginschwanncellsandaugmentsmyelindebrisphagocytosisinmacrophages AT talmichael deletionofcd47fromschwanncellsandmacrophageshastensmyelindisruptiondismantlingandscavenginginschwanncellsandaugmentsmyelindebrisphagocytosisinmacrophages AT rotshenkershlomo deletionofcd47fromschwanncellsandmacrophageshastensmyelindisruptiondismantlingandscavenginginschwanncellsandaugmentsmyelindebrisphagocytosisinmacrophages |