Cargando…
TreeKernel: interpretable kernel machine tests for interactions between -omics and clinical predictors with applications to metabolomics and COPD phenotypes
BACKGROUND: In this paper, we are interested in interactions between a high-dimensional -omics dataset and clinical covariates. The goal is to evaluate the relationship between a phenotype of interest and a high-dimensional omics pathway, where the effect of the omics data depends on subjects’ clini...
Autores principales: | Carpenter, Charlie M., Gillenwater, Lucas, Bowler, Russell, Kechris, Katerina, Ghosh, Debashis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601228/ https://www.ncbi.nlm.nih.gov/pubmed/37880571 http://dx.doi.org/10.1186/s12859-023-05459-x |
Ejemplares similares
-
PaIRKAT: A pathway integrated regression-based kernel association test with applications to metabolomics and COPD phenotypes
por: Carpenter, Charlie M., et al.
Publicado: (2021) -
Deep learning on graphs for multi-omics classification of COPD
por: Zhuang, Yonghua, et al.
Publicado: (2023) -
Identifying Protein–metabolite Networks Associated with COPD Phenotypes
por: Mastej, Emily, et al.
Publicado: (2020) -
Kernel approaches for differential expression analysis of mass spectrometry-based metabolomics data
por: Zhan, Xiang, et al.
Publicado: (2015) -
COmic: convolutional kernel networks for interpretable end-to-end learning on (multi-)omics data
por: Ditz, Jonas C, et al.
Publicado: (2023)