Cargando…
Simulating human walking: a model-based reinforcement learning approach with musculoskeletal modeling
INTRODUCTION: Recent advancements in reinforcement learning algorithms have accelerated the development of control models with high-dimensional inputs and outputs that can reproduce human movement. However, the produced motion tends to be less human-like if algorithms do not involve a biomechanical...
Autores principales: | Su, Binbin, Gutierrez-Farewik, Elena M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10601656/ https://www.ncbi.nlm.nih.gov/pubmed/37901705 http://dx.doi.org/10.3389/fnbot.2023.1244417 |
Ejemplares similares
-
Modeling and Simulation of a Human Knee Exoskeleton's Assistive Strategies and Interaction
por: Zhang, Longbin, et al.
Publicado: (2021) -
Evaluation of musculoskeletal models, scaling methods, and performance criteria for estimating muscle excitations and fiber lengths across walking speeds
por: Luis, Israel, et al.
Publicado: (2022) -
Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification
por: Zhang, Longbin, et al.
Publicado: (2023) -
Gait Trajectory and Gait Phase Prediction Based on an LSTM Network
por: Su, Binbin, et al.
Publicado: (2020) -
Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning
por: Luo, Shuzhen, et al.
Publicado: (2023)