Cargando…
R-Loops in Genome Instability and Cancer
SIMPLE SUMMARY: R-loops are three-stranded structures consisting of an RNA–DNA hybrid and an unpaired single-stranded DNA (ssDNA), with biological implications in cellular physiology and pathological conditions. R-loops interfere with DNA repair pathways and activate oncogenes, leading to dysregulat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10605827/ https://www.ncbi.nlm.nih.gov/pubmed/37894353 http://dx.doi.org/10.3390/cancers15204986 |
Sumario: | SIMPLE SUMMARY: R-loops are three-stranded structures consisting of an RNA–DNA hybrid and an unpaired single-stranded DNA (ssDNA), with biological implications in cellular physiology and pathological conditions. R-loops interfere with DNA repair pathways and activate oncogenes, leading to dysregulated cell proliferation, genome instability, and cancer development. R-loops accumulate in several types of cancer cells, including breast, ovarian, prostate, and lung cancer. Studying the biological roles of R-loops in cancer development is potentially beneficial for innovative diagnostic and treatment approaches for cancer. In this review, we focus on recent advances in R-loops’ roles in genome instability, DNA repair, and oncogenic events. ABSTRACT: R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops. |
---|