Cargando…
Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method
The article discusses the utilization of Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing (PMFES-ECT) in conjunction with the supervised learning method for the purpose of estimating defect parameters in conductive materials. To obtain estimates for these parameters, a three-dim...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608068/ https://www.ncbi.nlm.nih.gov/pubmed/37895631 http://dx.doi.org/10.3390/ma16206650 |
_version_ | 1785127691909857280 |
---|---|
author | Grochowalski, Jacek M. Chady, Tomasz |
author_facet | Grochowalski, Jacek M. Chady, Tomasz |
author_sort | Grochowalski, Jacek M. |
collection | PubMed |
description | The article discusses the utilization of Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing (PMFES-ECT) in conjunction with the supervised learning method for the purpose of estimating defect parameters in conductive materials. To obtain estimates for these parameters, a three-dimensional finite element method model was developed for the sensor and specimen containing defects. The outcomes obtained from the simulation were employed as training data for the k-Nearest Neighbors (k-NN) algorithm. Subsequently, the k-NN algorithm was employed to determine the defect parameters by leveraging the available measurement outcomes. The evaluation of classification accuracy for different combinations of predictors derived from measured data is also presented in this study. |
format | Online Article Text |
id | pubmed-10608068 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106080682023-10-28 Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method Grochowalski, Jacek M. Chady, Tomasz Materials (Basel) Article The article discusses the utilization of Pulsed Multifrequency Excitation and Spectrogram Eddy Current Testing (PMFES-ECT) in conjunction with the supervised learning method for the purpose of estimating defect parameters in conductive materials. To obtain estimates for these parameters, a three-dimensional finite element method model was developed for the sensor and specimen containing defects. The outcomes obtained from the simulation were employed as training data for the k-Nearest Neighbors (k-NN) algorithm. Subsequently, the k-NN algorithm was employed to determine the defect parameters by leveraging the available measurement outcomes. The evaluation of classification accuracy for different combinations of predictors derived from measured data is also presented in this study. MDPI 2023-10-11 /pmc/articles/PMC10608068/ /pubmed/37895631 http://dx.doi.org/10.3390/ma16206650 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Grochowalski, Jacek M. Chady, Tomasz Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method |
title | Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method |
title_full | Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method |
title_fullStr | Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method |
title_full_unstemmed | Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method |
title_short | Rapid Identification of Material Defects Based on Pulsed Multifrequency Eddy Current Testing and the k-Nearest Neighbor Method |
title_sort | rapid identification of material defects based on pulsed multifrequency eddy current testing and the k-nearest neighbor method |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608068/ https://www.ncbi.nlm.nih.gov/pubmed/37895631 http://dx.doi.org/10.3390/ma16206650 |
work_keys_str_mv | AT grochowalskijacekm rapididentificationofmaterialdefectsbasedonpulsedmultifrequencyeddycurrenttestingandtheknearestneighbormethod AT chadytomasz rapididentificationofmaterialdefectsbasedonpulsedmultifrequencyeddycurrenttestingandtheknearestneighbormethod |