Cargando…
Measurement and Characterization of Rotational Errors of Aerostatic Bearings in Subnanometer Accuracy
Measuring the running accuracy of aerostatic bearings is challenging because of the high-precision requirements in rotational motion. This paper presents an ultra-high precision measurement method for aerostatic bearings using atomic force microscopy (AFM) as the displacement sensor. The Donaldson r...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608937/ https://www.ncbi.nlm.nih.gov/pubmed/37893388 http://dx.doi.org/10.3390/mi14101952 |
Sumario: | Measuring the running accuracy of aerostatic bearings is challenging because of the high-precision requirements in rotational motion. This paper presents an ultra-high precision measurement method for aerostatic bearings using atomic force microscopy (AFM) as the displacement sensor. The Donaldson reversal method was used to separate the artifact form errors from the measurement results. A measurement system was developed with the integration of an AFM module. The effects of sensor nonlinearity, environmental noise, and structural vibration on the measurement results were effectively suppressed in the system. The experimental results show that the measurement achieves up to subnanometer accuracy. |
---|