Cargando…
A Computational Workflow to Predict Biological Target Mutations: The Spike Glycoprotein Case Study
The biological target identification process, a pivotal phase in the drug discovery workflow, becomes particularly challenging when mutations affect proteins’ mechanisms of action. COVID-19 Spike glycoprotein mutations are known to modify the affinity toward the human angiotensin-converting enzyme A...
Autores principales: | Cozzini, Pietro, Agosta, Federica, Dolcetti, Greta, Dal Palù, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609230/ https://www.ncbi.nlm.nih.gov/pubmed/37894561 http://dx.doi.org/10.3390/molecules28207082 |
Ejemplares similares
-
How a Blockchain Approach Can Improve Data Reliability
in the COVID-19 Pandemic
por: Cozzini, Pietro, et al.
Publicado: (2022) -
From oncoproteins to spike proteins: the evaluation of intramolecular stability using hydropathic force field
por: Agosta, Federica, et al.
Publicado: (2022) -
Potential Therapeutic Targeting of Coronavirus Spike Glycoprotein Priming
por: Barile, Elisa, et al.
Publicado: (2020) -
Computational methods to predict the mutational landscape of the spike protein
por: Paci, Emanuele, et al.
Publicado: (2021) -
Exploring the genomic and proteomic variations of SARS-CoV-2 spike glycoprotein: A computational biology approach
por: Lokman, Syed Mohammad, et al.
Publicado: (2020)