Cargando…
Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor
Recently, certain challenges have persisted in PH sensor applications, especially when employing hafnium oxide (HfO(2)) thin films as sensing layers, where issues related to sensitivity, hysteresis, and long-term stability hamper performance. Microwave annealing (MWA) technology, as a promising solu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609386/ https://www.ncbi.nlm.nih.gov/pubmed/37893291 http://dx.doi.org/10.3390/mi14101854 |
_version_ | 1785128001488289792 |
---|---|
author | Cui, Siwei Yang, Hui Zhang, Yifei Su, Xing Wu, Dongping |
author_facet | Cui, Siwei Yang, Hui Zhang, Yifei Su, Xing Wu, Dongping |
author_sort | Cui, Siwei |
collection | PubMed |
description | Recently, certain challenges have persisted in PH sensor applications, especially when employing hafnium oxide (HfO(2)) thin films as sensing layers, where issues related to sensitivity, hysteresis, and long-term stability hamper performance. Microwave annealing (MWA) technology, as a promising solution for addressing these challenges, has gained significant attraction due to its unique advantages. In this article, the effects of microwave annealing (MWA) treatment on the sensing behaviors of Extended-Gate Field-Effect Transistors (EGFETs) utilizing HfO(2) as a sensing film have been investigated for the first time. Various power levels of MWA treatment (1750 W/2100 W/2450 W) were selected to explore the optimal processing conditions. A thorough physical analysis was conducted to characterize the surface of the MWA-treated HfO(2) sensing thin film using techniques such as X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Our findings reveal that MWA treatment effectively increased the surface sites (Ns) in the HfO(2) sensing thin film, consequently leading to an increase in the pH sensitivity of EGFETs to 59.6 mV/pH, as well as a reduction in hysteresis and an enhancement in long-term stability. These results suggest that MWA offers a straightforward, energy-efficient method to enhance overall HfO(2) sensing film performance in EGFETs, offering insights for HfO(2) applications and broader microelectronics challenges. |
format | Online Article Text |
id | pubmed-10609386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106093862023-10-28 Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor Cui, Siwei Yang, Hui Zhang, Yifei Su, Xing Wu, Dongping Micromachines (Basel) Article Recently, certain challenges have persisted in PH sensor applications, especially when employing hafnium oxide (HfO(2)) thin films as sensing layers, where issues related to sensitivity, hysteresis, and long-term stability hamper performance. Microwave annealing (MWA) technology, as a promising solution for addressing these challenges, has gained significant attraction due to its unique advantages. In this article, the effects of microwave annealing (MWA) treatment on the sensing behaviors of Extended-Gate Field-Effect Transistors (EGFETs) utilizing HfO(2) as a sensing film have been investigated for the first time. Various power levels of MWA treatment (1750 W/2100 W/2450 W) were selected to explore the optimal processing conditions. A thorough physical analysis was conducted to characterize the surface of the MWA-treated HfO(2) sensing thin film using techniques such as X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Our findings reveal that MWA treatment effectively increased the surface sites (Ns) in the HfO(2) sensing thin film, consequently leading to an increase in the pH sensitivity of EGFETs to 59.6 mV/pH, as well as a reduction in hysteresis and an enhancement in long-term stability. These results suggest that MWA offers a straightforward, energy-efficient method to enhance overall HfO(2) sensing film performance in EGFETs, offering insights for HfO(2) applications and broader microelectronics challenges. MDPI 2023-09-28 /pmc/articles/PMC10609386/ /pubmed/37893291 http://dx.doi.org/10.3390/mi14101854 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cui, Siwei Yang, Hui Zhang, Yifei Su, Xing Wu, Dongping Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor |
title | Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor |
title_full | Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor |
title_fullStr | Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor |
title_full_unstemmed | Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor |
title_short | Effect of Microwave Annealing on the Sensing Characteristics of HfO(2) Thin Film for High Sensitive pH-EGFET Sensor |
title_sort | effect of microwave annealing on the sensing characteristics of hfo(2) thin film for high sensitive ph-egfet sensor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609386/ https://www.ncbi.nlm.nih.gov/pubmed/37893291 http://dx.doi.org/10.3390/mi14101854 |
work_keys_str_mv | AT cuisiwei effectofmicrowaveannealingonthesensingcharacteristicsofhfo2thinfilmforhighsensitivephegfetsensor AT yanghui effectofmicrowaveannealingonthesensingcharacteristicsofhfo2thinfilmforhighsensitivephegfetsensor AT zhangyifei effectofmicrowaveannealingonthesensingcharacteristicsofhfo2thinfilmforhighsensitivephegfetsensor AT suxing effectofmicrowaveannealingonthesensingcharacteristicsofhfo2thinfilmforhighsensitivephegfetsensor AT wudongping effectofmicrowaveannealingonthesensingcharacteristicsofhfo2thinfilmforhighsensitivephegfetsensor |