Cargando…
Investigation of the Electrical Coupling Effect for Monolithic 3-Dimensional Nonvolatile Memory Consisting of a Feedback Field-Effect Transistor Using TCAD
In this study, the electrical characteristics and electrical coupling effect for monolithic 3-dimensional nonvolatile memory consisting of a feedback field-effect transistor (M3D-NVM-FBFET) were investigated using technology computer-aided design. The M3D-NVM-FBFET consists of an N-type FBFET with a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10609442/ https://www.ncbi.nlm.nih.gov/pubmed/37893259 http://dx.doi.org/10.3390/mi14101822 |
Sumario: | In this study, the electrical characteristics and electrical coupling effect for monolithic 3-dimensional nonvolatile memory consisting of a feedback field-effect transistor (M3D-NVM-FBFET) were investigated using technology computer-aided design. The M3D-NVM-FBFET consists of an N-type FBFET with an oxide–nitride–oxide layer and a metal–oxide–semiconductor FET (MOSFET) in the top and bottom tiers, respectively. For the memory simulation, the programming and erasing voltages were applied at 18 and −18 V for 1 μs, respectively. The memory window of the M3D-NVM-FBFET was 1.98 V. As the retention simulation was conducted for 10 years, the memory window decreased from 1.98 to 0.83 V. For the M3D-NVM-FBFET, the electrical coupling that occurs through an electrical signal in the bottom-tier transistor was investigated. As the thickness of the interlayer dielectric (T(ILD)) decreases from 100 to 10 nm, the change in the V(TH) increases from 0.16 to 0.87 V and from 0.15 to 0.84 V after the programming and erasing operations, respectively. M3D-NVM-FBFET circuits with a thin T(ILD) of 50 nm or less need to be designed considering electrical coupling. |
---|