Cargando…
Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT
Multi-object pedestrian tracking plays a crucial role in autonomous driving systems, enabling accurate perception of the surrounding environment. In this paper, we propose a comprehensive approach for pedestrian tracking, combining the improved YOLOv8 object detection algorithm with the OC-SORT trac...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610662/ https://www.ncbi.nlm.nih.gov/pubmed/37896532 http://dx.doi.org/10.3390/s23208439 |
_version_ | 1785128309823111168 |
---|---|
author | Xiao, Xin Feng, Xinlong |
author_facet | Xiao, Xin Feng, Xinlong |
author_sort | Xiao, Xin |
collection | PubMed |
description | Multi-object pedestrian tracking plays a crucial role in autonomous driving systems, enabling accurate perception of the surrounding environment. In this paper, we propose a comprehensive approach for pedestrian tracking, combining the improved YOLOv8 object detection algorithm with the OC-SORT tracking algorithm. First, we train the improved YOLOv8 model on the Crowdhuman dataset for accurate pedestrian detection. The integration of advanced techniques such as softNMS, GhostConv, and C3Ghost Modules results in a remarkable precision increase of 3.38% and an mAP@0.5:0.95 increase of 3.07%. Furthermore, we achieve a significant reduction of 39.98% in parameters, leading to a 37.1% reduction in model size. These improvements contribute to more efficient and lightweight pedestrian detection. Next, we apply our enhanced YOLOv8 model for pedestrian tracking on the MOT17 and MOT20 datasets. On the MOT17 dataset, we achieve outstanding results with the highest HOTA score reaching 49.92% and the highest MOTA score reaching 56.55%. Similarly, on the MOT20 dataset, our approach demonstrates exceptional performance, achieving a peak HOTA score of 48.326% and a peak MOTA score of 61.077%. These results validate the effectiveness of our approach in challenging real-world tracking scenarios. |
format | Online Article Text |
id | pubmed-10610662 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-106106622023-10-28 Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT Xiao, Xin Feng, Xinlong Sensors (Basel) Article Multi-object pedestrian tracking plays a crucial role in autonomous driving systems, enabling accurate perception of the surrounding environment. In this paper, we propose a comprehensive approach for pedestrian tracking, combining the improved YOLOv8 object detection algorithm with the OC-SORT tracking algorithm. First, we train the improved YOLOv8 model on the Crowdhuman dataset for accurate pedestrian detection. The integration of advanced techniques such as softNMS, GhostConv, and C3Ghost Modules results in a remarkable precision increase of 3.38% and an mAP@0.5:0.95 increase of 3.07%. Furthermore, we achieve a significant reduction of 39.98% in parameters, leading to a 37.1% reduction in model size. These improvements contribute to more efficient and lightweight pedestrian detection. Next, we apply our enhanced YOLOv8 model for pedestrian tracking on the MOT17 and MOT20 datasets. On the MOT17 dataset, we achieve outstanding results with the highest HOTA score reaching 49.92% and the highest MOTA score reaching 56.55%. Similarly, on the MOT20 dataset, our approach demonstrates exceptional performance, achieving a peak HOTA score of 48.326% and a peak MOTA score of 61.077%. These results validate the effectiveness of our approach in challenging real-world tracking scenarios. MDPI 2023-10-13 /pmc/articles/PMC10610662/ /pubmed/37896532 http://dx.doi.org/10.3390/s23208439 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Xiao, Xin Feng, Xinlong Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT |
title | Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT |
title_full | Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT |
title_fullStr | Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT |
title_full_unstemmed | Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT |
title_short | Multi-Object Pedestrian Tracking Using Improved YOLOv8 and OC-SORT |
title_sort | multi-object pedestrian tracking using improved yolov8 and oc-sort |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10610662/ https://www.ncbi.nlm.nih.gov/pubmed/37896532 http://dx.doi.org/10.3390/s23208439 |
work_keys_str_mv | AT xiaoxin multiobjectpedestriantrackingusingimprovedyolov8andocsort AT fengxinlong multiobjectpedestriantrackingusingimprovedyolov8andocsort |