Cargando…

Soft-Sensing Regression Model: From Sensor to Wafer Metrology Forecasting

The semiconductor industry is one of the most technology-evolving and capital-intensive market sectors. Effective inspection and metrology are necessary to improve product yield, increase product quality and reduce costs. In recent years, many types of semiconductor manufacturing equipments have bee...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Angzhi, Huang, Yu, Xu, Fei, Bom, Sthitie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611205/
https://www.ncbi.nlm.nih.gov/pubmed/37896457
http://dx.doi.org/10.3390/s23208363
Descripción
Sumario:The semiconductor industry is one of the most technology-evolving and capital-intensive market sectors. Effective inspection and metrology are necessary to improve product yield, increase product quality and reduce costs. In recent years, many types of semiconductor manufacturing equipments have been equipped with sensors to facilitate real-time monitoring of the production processes. These production-state and equipment-state sensor data provide an opportunity to practice machine-learning technologies in various domains, such as anomaly/fault detection, maintenance scheduling, quality prediction, etc. In this work, we focus on the soft-sensing regression problem in metrology systems, which uses sensor data collected during wafer processing steps to predict impending inspection measurements that used to be measured in wafer inspection and metrology systems. We proposed a regressor based on Long Short-term Memory network and devised two distinct loss functions for the purpose of the training model. Although the assessment of our prediction errors by engineers is subjective, a novel piece-wise evaluation metric was introduced to evaluate model accuracy in a mathematical way. Our experimental results showcased that the proposed model is capable of achieving both accurate and early prediction across various types of inspections in complicated manufacturing processes.