Cargando…
Machine Learning Strategies for Improved Phenotype Prediction in Underrepresented Populations
Precision medicine models often perform better for populations of European ancestry due to the over-representation of this group in the genomic datasets and large-scale biobanks from which the models are constructed. As a result, prediction models may misrepresent or provide less accurate treatment...
Autores principales: | Bonet, David, Levin, May, Montserrat, Daniel Mas, Ioannidis, Alexander G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10614800/ https://www.ncbi.nlm.nih.gov/pubmed/37904983 http://dx.doi.org/10.1101/2023.10.12.561949 |
Ejemplares similares
-
PopGenAdapt: Semi-Supervised Domain Adaptation for Genotype-to-Phenotype Prediction in Underrepresented Populations
por: Cara, Marçal Comajoan, et al.
Publicado: (2023) -
Multivariate adaptive shrinkage improves cross-population transcriptome prediction and association studies in underrepresented populations
por: Araujo, Daniel S., et al.
Publicado: (2023) -
Multivariate adaptive shrinkage improves cross-population transcriptome prediction for transcriptome-wide association studies in underrepresented populations
por: Araujo, Daniel S., et al.
Publicado: (2023) -
Subpopulation-specific machine learning prognosis for underrepresented patients with double prioritized bias correction
por: Afrose, Sharmin, et al.
Publicado: (2022) -
Underrepresented Populations at the Archaic Introgression Frontier
por: Villanea, Fernando A, et al.
Publicado: (2022)