Cargando…

Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision

Statistical fine-mapping prioritizes putative causal variants from a large number of candidate variants, and is widely used in expression quantitative loci (eQTLs) studies. In eQTL fine-mapping, the existence of causal variants for gene expression is not guaranteed, since the genetic heritability of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Qingbo S, Edahiro, Ryuya, Namkoong, Ho, Hasegawa, Takanori, Shirai, Yuya, Sonehara, Kyuto, Kumanogoh, Atsushi, Ishii, Makoto, Koike, Ryuji, Kimura, Akinori, Imoto, Seiya, Miyano, Satoru, Ogawa, Seishi, Kanai, Takanori, Fukunaga, Koichi, Okada, Yukinori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616627/
https://www.ncbi.nlm.nih.gov/pubmed/37915762
http://dx.doi.org/10.1093/nargab/lqad090
_version_ 1785129439501221888
author Wang, Qingbo S
Edahiro, Ryuya
Namkoong, Ho
Hasegawa, Takanori
Shirai, Yuya
Sonehara, Kyuto
Kumanogoh, Atsushi
Ishii, Makoto
Koike, Ryuji
Kimura, Akinori
Imoto, Seiya
Miyano, Satoru
Ogawa, Seishi
Kanai, Takanori
Fukunaga, Koichi
Okada, Yukinori
author_facet Wang, Qingbo S
Edahiro, Ryuya
Namkoong, Ho
Hasegawa, Takanori
Shirai, Yuya
Sonehara, Kyuto
Kumanogoh, Atsushi
Ishii, Makoto
Koike, Ryuji
Kimura, Akinori
Imoto, Seiya
Miyano, Satoru
Ogawa, Seishi
Kanai, Takanori
Fukunaga, Koichi
Okada, Yukinori
author_sort Wang, Qingbo S
collection PubMed
description Statistical fine-mapping prioritizes putative causal variants from a large number of candidate variants, and is widely used in expression quantitative loci (eQTLs) studies. In eQTL fine-mapping, the existence of causal variants for gene expression is not guaranteed, since the genetic heritability of gene expression explained by nearby (cis-) variants is limited. Here we introduce a refined fine-mapping algorithm, named Knockoff–Finemap combination (KFc). KFc estimates the probability that the causal variant(s) exist in the cis-window of a gene through construction of knockoff genotypes (i.e. a set of synthetic genotypes that resembles the original genotypes), and uses it to adjust the posterior inclusion probabilities (PIPs). Utilizing simulated gene expression data, we show that KFc results in calibrated PIP distribution with improved precision. When applied to gene expression data of 465 genotyped samples from the Japan COVID-19 Task Force (JCTF), KFc resulted in significant enrichment of a functional score as well as reporter assay hits in the top PIP bins. When combined with functional priors derived from an external fine-mapping study (GTEx), KFc resulted in a significantly higher proportion of hematopoietic trait putative causal variants in the top PIP bins. Our work presents improvements in the precision of a major fine-mapping algorithm.
format Online
Article
Text
id pubmed-10616627
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-106166272023-11-01 Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision Wang, Qingbo S Edahiro, Ryuya Namkoong, Ho Hasegawa, Takanori Shirai, Yuya Sonehara, Kyuto Kumanogoh, Atsushi Ishii, Makoto Koike, Ryuji Kimura, Akinori Imoto, Seiya Miyano, Satoru Ogawa, Seishi Kanai, Takanori Fukunaga, Koichi Okada, Yukinori NAR Genom Bioinform Standard Article Statistical fine-mapping prioritizes putative causal variants from a large number of candidate variants, and is widely used in expression quantitative loci (eQTLs) studies. In eQTL fine-mapping, the existence of causal variants for gene expression is not guaranteed, since the genetic heritability of gene expression explained by nearby (cis-) variants is limited. Here we introduce a refined fine-mapping algorithm, named Knockoff–Finemap combination (KFc). KFc estimates the probability that the causal variant(s) exist in the cis-window of a gene through construction of knockoff genotypes (i.e. a set of synthetic genotypes that resembles the original genotypes), and uses it to adjust the posterior inclusion probabilities (PIPs). Utilizing simulated gene expression data, we show that KFc results in calibrated PIP distribution with improved precision. When applied to gene expression data of 465 genotyped samples from the Japan COVID-19 Task Force (JCTF), KFc resulted in significant enrichment of a functional score as well as reporter assay hits in the top PIP bins. When combined with functional priors derived from an external fine-mapping study (GTEx), KFc resulted in a significantly higher proportion of hematopoietic trait putative causal variants in the top PIP bins. Our work presents improvements in the precision of a major fine-mapping algorithm. Oxford University Press 2023-10-30 /pmc/articles/PMC10616627/ /pubmed/37915762 http://dx.doi.org/10.1093/nargab/lqad090 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Standard Article
Wang, Qingbo S
Edahiro, Ryuya
Namkoong, Ho
Hasegawa, Takanori
Shirai, Yuya
Sonehara, Kyuto
Kumanogoh, Atsushi
Ishii, Makoto
Koike, Ryuji
Kimura, Akinori
Imoto, Seiya
Miyano, Satoru
Ogawa, Seishi
Kanai, Takanori
Fukunaga, Koichi
Okada, Yukinori
Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision
title Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision
title_full Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision
title_fullStr Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision
title_full_unstemmed Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision
title_short Estimating gene-level false discovery probability improves eQTL statistical fine-mapping precision
title_sort estimating gene-level false discovery probability improves eqtl statistical fine-mapping precision
topic Standard Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10616627/
https://www.ncbi.nlm.nih.gov/pubmed/37915762
http://dx.doi.org/10.1093/nargab/lqad090
work_keys_str_mv AT wangqingbos estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT edahiroryuya estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT namkoongho estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT hasegawatakanori estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT shiraiyuya estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT soneharakyuto estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT kumanogohatsushi estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT ishiimakoto estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT koikeryuji estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT kimuraakinori estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT imotoseiya estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT miyanosatoru estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT ogawaseishi estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT kanaitakanori estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT fukunagakoichi estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision
AT okadayukinori estimatinggenelevelfalsediscoveryprobabilityimproveseqtlstatisticalfinemappingprecision